[1] 姚恩建, 李斌斌, 刘莎莎, 等. 考虑土地利用性质匹配
度的城轨客流分布预测[J]. 交通运输系统工程与信
息, 2015, 15(6): 107-113. [YAO E J, LI B B, LIU S S,
et al. Forecast of passenger flow distribution among
urban rail stations considering the land-use matching
degree[J]. Journal of Transportation Systems Engineering
and Information Technology, 2015, 15(6): 107-113.]
[2] 李子浩, 田向亮, 黎忠文, 等. 基于客流规律的地铁车
站客流风险分析[J]. 清华大学学报(自然科学版),
2019, 59(10): 854-860. [LI Z H, TIAN X L, LI Z W,
et al. Risk analysis of metro station passenger flow based
on passenger flow patterns[J]. Journal of Tsinghua
University(Science and Technology), 2019, 59(10): 854-
860.]
[3] 光志瑞. 城市轨道交通节假日客流预测研究[J]. 交通
工程, 2017, 17(3): 27-35. [GUANG Z R. Short-term
passenger flow forecast at urban railway stations during
holiday[J]. Journal of Transportation Engineering, 2017,
17(3): 27-35.]
[4] 尹芹, 孟斌, 张丽英. 基于客流特征的北京地铁站点类
型识别[J]. 地理科学进展, 2016, 35(1): 126-134. [YIN
Q, MENG B, ZHANG L Y. Classification of subway
stations in Beijing based on passenger flow
characteristics[J]. Progress in Geography, 2016, 35 (1):
126-134.]
[5] 王子甲, 刘海旭, TAKU F. 基于AFC数据和RF模型的
城轨车站服务功能分类[J]. 交通运输系统工程与信
息, 2018, 18(4): 224-230. [WANG Z J, LIU H X, TAKU
F. Metro station classification by service function based
on AFC data and RF method[J]. Journal of Transportation
Systems Engineering and Information Technology, 2018,
18(4): 224-230.]
[6] 冷彪, 赵文远. 基于客流数据的区域出行特征聚类[J].
计算机研究与发展, 2014, 51(12): 2653-2662. [LENG
B, ZHAO W Y. Region ridership characteristic
clustering using passenger flow data[J]. Journal of
Computer Research and Development, 2014, 51(12):
2653-2662.]
[7] 岳真宏, 陈峰, 王子甲, 等. 基于刷卡数据和高斯混合
聚类的地铁车站分类[J]. 都市快轨交通, 2017, 30(2):
48- 51, 107. [YUE Z H, CHEN F, WANG Z J, et al.
Classifications of metro stations by clustering smart carddata using the Gaussian mixture model[J]. Urban Rapid
Rail Transit, 2017, 30(2): 48-51, 107.]
[8] 李少英, 彭洁玲, 吴志峰, 等. 基于地铁与土地利用影
响关系的广州地铁站点特征聚类[J].广州大学学报(自
然科学版), 2016, 15(3): 63-69, 2. [LI S Y, PENG J L,
WU Z F, et al. Exploring the relationship between urban
rail transit & and use and their quantitative measurement
model: A case study of Guangzhou[J]. Journal of
Guangdong University(Natural Science Edition), 2016, 15
(3): 63-69, 2.]
[9] 陈建均. 基于聚类分析法的广州地铁周末客流变化规
律[J]. 交通与运输, 2019, 32(S1): 141-147. [CHEN J J.
Changes characteristics of weekend passenger flow of
Guangzhou metro based on cluster analysis[J]. Traffic &
Transportation, 2019, 32(S1): 141-147.]
[10] 朱宇婷, 刘莹, 许奇, 等. 交通可达性与城市经济活动
的空间特征分析: 以北京市为例[J]. 交通运输系统工
程与信息, 2020, 20(5): 226-233. [ZHU Y Q, LIU Y, XU
Q, et al. Spatial characteristics analysis of traffic
accessibility and city economic activity: A case study of
Beijing[J]. Journal of Transportation Systems
Engineering and Information Technology, 2020, 20(5):
226-233.]
|