交通运输系统工程与信息 ›› 2022, Vol. 22 ›› Issue (2): 72-90.DOI: 10.16097/j.cnki.1009-6744.2022.02.008
郭烈*,胥林立,秦增科,王旭
收稿日期:
2021-10-08
修回日期:
2021-12-26
接受日期:
2022-01-06
出版日期:
2022-04-25
发布日期:
2022-04-23
作者简介:
郭烈(1978- )男,江西分宜人,副教授,博士。
基金资助:
GUO Lie* , XU Lin-li, QIN Zeng-ke, WANG Xu
Received:
2021-10-08
Revised:
2021-12-26
Accepted:
2022-01-06
Online:
2022-04-25
Published:
2022-04-23
Supported by:
摘要: 部分或有条件自动驾驶车辆允许驾驶员将驾驶任务移交给自动驾驶系统,但驾驶员仍需对驾驶环境进行监测,若发生紧急事件或驾驶环境超出系统运行设计域等情况,驾驶员需要及时接管车辆。影响驾驶接管过程的因素主要包括:人因、交通环境以及人-机交互系统。本文分析了驾驶员认知负荷特性等人因对接管过程和接管时间预算的影响。分析发现,驾驶员长时间脱离驾驶任务会导致其陷入被动疲劳或驾驶分心状态,从而降低接管绩效。适当的非驾驶任务可以使驾驶员保持一定的认知负荷,降低驾驶员的被动疲劳水平。结合网联技术的应用可以多次发出预警信号,提高接管绩效。本文讨论了交通密度、道路条件等交通环境对接管时驾驶员感知、认知及决策的影响,探讨混合交通下过渡区智能网联车辆控制权切换 (Transitions of Control, ToC) 的管理问题。在复杂道路交通下,驾驶员需要更多时间恢复对环境的感知,且驾驶员在弯道接管车辆时更容易出现较大横向偏差。在混合交通环境中,为防止过渡区出现集中的ToC,可以制定相应交通管理措施,以降低过渡区域中车辆之间的相互干扰。本文还分析了视觉、听觉、触 觉、嗅觉及其组合类型交互方式的优、缺点,讨论网联环境下人-机交互系统设计以及ToC形式。 单个的交互方式有其自身的优、缺点,多种类型相结合的交互形式能形成优势互补,及时地将接 管信息传递给驾驶员,并将其注意力集中于对环境的感知。网联技术发展使得可利用的行车信息的数量和种类都有所提高,网联信息需要更好地呈现策略,以保证人-机交互界面具有较高的可用性和接受性,为驾驶员提供更加准确的交互信息。同时,利用驾驶员状态识别技术实时监测驾驶员所处状态,并通过人-机交互系统提醒驾驶员,使其保持警觉,提高接管绩效。未来研究应该重点关注非驾驶任务对驾驶员认知特性的影响,结合接管时的驾驶环境,遵循预测算法辅助驾驶员实现控制权的平稳过渡。随着网联技术的不断应用,逐步改进现有人-机交互系统的设计和性能,对过渡区域ToC的管理问题展开深入研究。
中图分类号:
郭烈, 胥林立, 秦增科, 王旭. 自动驾驶接管影响因素分析与研究进展[J]. 交通运输系统工程与信息, 2022, 22(2): 72-90.
GUO Lie , XU Lin-li, QIN Zeng-ke, WANG Xu. Analysis and Overview of Influencing Factors on Autonomous Driving Takeover[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 72-90.
[1] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles [R]. New York: SAE International, 2021. [2] 秦增科, 郭烈, 马跃, 等. 基于人机协同的车道保持辅助系统研究进展[J]. 工程科学学报, 2021, 43(3): 355- 364. [QIN Z K, GUO L, MA Y, et al. Overview of lane-keeping assist system based on human-machine cooperative control[J]. Chinese Journal of Engineering, 2021, 43(3): 355-364.] [3] 吕能超, 段至诚, 吴超仲. 驾驶经验对先进驾驶辅助系统的作用研究[J]. 交通运输系统工程与信息, 2017, 17 (6): 48-55. [LV N C, DUAN Z C, WU C Z. The impact of driving experience on advanced driving assistant systems [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 48-55.] [4] DEPNER N, BAVENDIEK J, KNÖß S, et al. HMI concept for safe driving mode transitions[J]. ATZ Worldwide, 2020, 122(4): 26-31. [5] YOON S H, JI Y G. Non-driving-related tasks, workload, and takeover performance in highly automated driving contexts[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 60: 620-631. [6] MAGGI D, ROMANO R, CARSTEN O. Transitions between highly automated and longitudinally assisted driving: The role of the initiator in the fight for authority [J/OL]. California: Human Factors, (2020-8-31)[2021- 10-8], https://journals.sagepub.com. [7] GOLD C, HAPPEE R, BENGLER K. Modeling take-over performance in level 3 conditionally automated vehicles [J]. Accident Analysis & Prevention, 2018, 116: 3-13. [8] ZHANG B, DE WINTER J, VAROTTO S, et al. Determinants of take-over time from automated driving: A meta-analysis of 129 studies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 64: 285-307. [9] MCDONALD A D, ALAMBEIGI H, ENGSTROM J, et al. Towards computational simulations of behavior during automated driving take-overs: A review of the empirical and modeling literatures[J]. Human Factors, 2019, 61(4): 642-688. [10] WEIGL K, SCHARTMÜLLER C, WINTERSBERGER P, et al. The influence of experienced severe road traffic accidents on take-over reactions and non-driving-relatedtasks in an automated driving simulator study[J]. Accident Analysis & Prevention, 2021, 162: 106408. [11] ALREFAIE M T, SUMMERSKILL S, JACKON T W. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles[J]. Accident Analysis & Prevention, 2019, 131: 180-190. [12] ZHANG T, YANG J, LIANG N, et al. Physiological measurements of situation awareness: A systematic review [J/OL]. California: Human Factors, (2020-11-20)[2021- 10-8], https://journals.sagepub.com. [13] CHARLES R L, NIXON J. Measuring mental workload using physiological measures: A systematic review[J]. Applied Ergonomics, 2019, 74: 221-232. [14] 张毅, 姚丹亚, 李力, 等. 智能车路协同系统关键技术与应用[J/OL]. 交通运输系统工程与信息, (2021- 9- 16) [2021- 10- 8]. http://kns.cnki.net. [ZHANG Y, YAO D Y, LI L, et al. Technologies and applications for intelligent vehicle-infrastructure cooperation systems [J/OL]. Journal of Transportation Systems Engineering and Information Technology, (2021-9-16)[2021-10-8]. http://kns.cnki.net.] [15] WARM J S, PARASURAMAN R, MATTHEWS G. Vigilance requires hard mental work and is stressful[J]. Human Factors, 2008, 50(3): 433-441. [16] 刘卓凡, 吴付威, 张海伦. 平直高速公路路段低交通量下L2自动驾驶对驾驶人心理负荷的影响研究[J/OL]. 中国公路学报, (2020-11-18) [2021-10-8], http://kns. cnki.net. [LIU Z F, WU F W, ZHANG H L. Impact of level-2 autonomous driving mode on drivers' mental workload under low traffic volume of straight motorway [J/OL]. China Journal of Highway and Transport, (2020- 11-18) [2021-10-8], http://kns.cnki.net.] [17] SCHARTMüLLER C, WEIGL K, LöCKEN A, et al. Displays for productive non-driving related tasks: Visual behavior and its impact in conditionally automated driving[J]. Multimodal Technologies and Interaction, 2021, 5(4): 21. [18] 马蓉, 张康康. 自动驾驶驾驶人接管特征研究进展[J]. 汽车实用技术, 2020(12): 18-20. [MA R, ZHANG K K. Research progress on autonomous driver takeover characteristics[J]. Automobile Applied Technology, 2020 (12): 18-20.] [19] FORSTER Y, GEISEL V, HERGETH S, et al. Engagement in non-driving related tasks as a nonintrusive measure for mode awareness: A simulator study [J]. Information, 2020, 11(5): 239. [20] MORALES-ALVAREZ W, SIPELE O, LéBERON R, et al. Automated driving: A literature review of the takeover request in conditional automation[J]. Electronics, 2020, 9(12): 2087. [21] WANDTNER B, SCHÖMIG N, SCHMIDT G. Effects of non-driving related task modalities on takeover performance in highly automated driving[J]. Human Factors, 2018, 60(6): 870-881. [22] ZEEB K, BUCHNER A, SCHRAUF M. What determines the take-over time? An integrated model approach of driver take-over after automated driving[J]. Accident Analysis & Prevention, 2015, 78: 212-221. [23] SHINAR D, TRACTINSKY N, COMPTON R. Effects of practice, age, and task demands, on interference from a phone task while driving[J]. Accident Analysis & Prevention, 2005, 37(2): 315-326. [24] KO S M, JI Y G. How we can measure the non-drivingtask engagement in automated driving: comparing flow experience and workload[J]. Applied Ergonomics, 2018, 67: 237-245. [25] PFLEGING B, RANG M, BROY N. Investigating user needs for non-driving-related activities during automated driving[C]. New York: Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia, 2016. [26] CHOI D, SATO T, ANDO T, et al. Effects of cognitive and visual loads on driving performance after take-over request (TOR) in automated driving[J]. Applied Ergonomics, 2020, 85: 103074. [27] 张瑜. 基于用户体验的自动驾驶接管系统人机交互策略设计研究[D]. 广州: 华南理工大学, 2018. [ZHANG Y. Research on human-computer interaction strategy design of autopilot takeover system based on user experienced[D]. Guangzhou: South China University of Technology, 2018.] [28] 秦华, 李吉涛, 冉令华. 次任务下的驾驶员视觉搜索能力研究[J]. 交通运输系统工程与信息, 2021, 21(1): 137- 141. [QIN H, Ll J T, RAN L H. Drivers visual search ability in sub-task[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 137-141.] [29] KIM J, KIM W, KIM H S, et al. A study on the correlation between subjective driver readiness and NDRT Type during automated driving[C]. Jeju: 2020 International Conference on Information and Communication Technology Convergence, 2020. [30] RAUFFET P, BOTZER A, CHAUVIN C, et al. The relationship between level of engagement in a nondriving task and driver response time when taking control of an automated vehicle[J]. Cognition, Technology & Work, 2020, 22(4): 721-731. [31] WEAVER B W, DELUCIA P R. A systematic review and meta- analysis of takeover performance duringconditionally automated driving[J/OL]. Human Factors, (2020- 12- 14) [2021- 10- 8]. https://journals.sagepub. com. [32] FELDHÜTTER A, HECHT T, KALB L, et al. Effect of prolonged periods of conditionally automated driving on the development of fatigue: With and without non-drivingrelated activities[J]. Cognition, Technology & Work, 2019, 21(1): 33-40. [33] WRLE J, METZ B, OTHERSEN I, et al. Sleep in highly automated driving: Takeover performance after waking up [J]. Accident Analysis & Prevention, 2020, 144: 105617. [34] STAPEL J, MULLAKKAL- BABU F A, HAPPEE R. Driver behavior and workload in an on-road automated vehicle[C]. Hague: Proceedings of the RSS2017 Conference, 2017. [35] BIONDI F N, LOHANI M, HOPMAN R, et al. 80 MPH and out-of-the-loop: Effects of real-world semi-automated driving on driver workload and arousal[C]. California: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2018. [36] SCHÖMIG N, HARGUTT V, NEUKUM A, et al. The interaction between highly automated driving and the development of drowsiness[J]. Procedia Manufacturing, 2015, 3: 6652-6659. [37] WANG W, NA X, CAO D, et al. Decision-making in driver- automation shared control: A review and perspectives[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1-19. [38] LEE S C, YOON S H, GU Y. Effects of non-drivingrelated task attributes on takeover quality in automated vehicles[J]. International Journal of Human Computer Interaction, 2020, 37(4): 211-219. [39] KIM J, KIM H S, KIM W, et al. Investigation on the effect of mental workload on the time-related take-over performance[C]. Jeju: 2020 International Conference on Information and Communication Technology Convergence, 2020. [40] 林庆峰, 王兆杰, 鲁光泉. 城市道路环境下自动驾驶车辆接管绩效分析[J]. 中国公路学报, 2019, 32(6): 240- 247. [LIN Q F, WANG Z J, LU G Q. Analysis of takeover performance for automated vehicles in urban road environments[J]. China Journal of Highway and Transport, 2019, 32(6): 240-247.] [41] 鲁光泉, 赵鹏云, 王兆杰, 等. 自动驾驶中视觉次任务对年轻驾驶人接管时间的影响[J]. 中国公路学报, 2018, 31(4): 165-171. [LU G Q, ZHAO P Y, WANG Z J, et al. Effect of visual sub-tasks on young drivers' takeover time in autonomous driving[J]. Journal of China Highway and Transport, 2018, 31(4): 165-171.] [42] ERIKSSON A, STANTON N A. Takeover time in highly automated vehicles: Noncritical transitions to and from manual control[J]. Human Factors, 2017, 59(4): 689-705. [43] ZHOU H, ITOH M, KITAZAKI S. How does explanation-based knowledge influence driver take-over in conditional driving automation?[J]. IEEE Transactions on Human Machine Systems, 2021 (99): 1-10. [44] 徐筱秦, 冯忠祥, 李靖宇. 驾驶员接管自动驾驶车辆研究进展[J]. 交通信息与安全, 2019, 37(5): 1-8. [XU X Q, FENG Z X, LI J Y. A review of progresses on drivers' takeover behaviors of automatic vehicles[J]. Journal of Transport Information and Safety, 2019, 37(5): 1-8.] [45] SARKER A, SHEN H, RAHMAN M, et al. A review of sensing and communication, human factors, and controller aspects for information-aware connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(1): 7-29. [46] DEMMEL S, GRUYER D, BURKHARDT J M, et al. Global risk assessment in an autonomous driving context: Impact on both the car and the driver[J]. IFACPapersOnLine, 2019, 51(34): 390-395. [47] LU Z, ZHANG B, FELDHÜTTER A, et al. Beyond mere take-over requests: The effects of monitoring requests on driver attention, take- over performance, and acceptance [J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 63: 22-37. [48] BRANDENBURG S, ROCHE F. Behavioral changes to repeated takeovers in automated driving: The drivers' ability to transfer knowledge and the effects of takeover request process[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 73: 15-28. [49] FABIENNE, ROCHE, ANNA, et al. Behavioral changes to repeated takeovers in highly automated driving: Effects of the takeover-request design and the nondrivingrelated task modality[J]. Human Factors, 2019, 61(5): 839-849. [50] WINKLER S, KAZAZI J, VOLLRATH M. Practice makes better-Learning effects of driving with a multistage collision warning[J]. Accident Analysis & Prevention, 2018, 117: 398-409. [51] BRANDENBURG S, EPPLE S. Drivers' individual design preferences of takeover requests in highly automated driving[J]. I-Com, 2019, 18(2): 167-178. [52] WALCH M, MÜHL K, BAUMANN M, et al. Autonomous driving: Investigating the feasibility of bimodal take-over requests[J]. International Journal of Mobile Human Computer Interaction, 2017, 9(2): 58-74. [53] ZHANG W, ZENG Y, YANG Z, et al. Optimal time intervals in two-stage takeover warning systems with insight into the drivers' neuroticism personality[J]. Frontiers in Psychology, 2021, 12: 157-169. [54] MA S, ZHANG W, YANG Z, et al. Take over gradually in conditional automated driving: The effect of two-stage warning systems on situation awareness, driving stress, takeover performance, and acceptance[J]. International Journal of Human Computer Interaction, 2021, 37(4): 352-362. [55] DU N, KIM J, ZHOU F, et al. Evaluating effects of cognitive load, takeover request lead time, and traffic density on drivers' takeover performance in conditionally automated driving[C]. New York: 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2020. [56] SCHARFE- SCHERF M S L. How are eye tracking patterns in takeover situations related to complexity, takeover quality and cognitive model predictions?[C]. Berlin: International Forum on Advanced Microsystems for Automotive Applications, 2020. [57] DU N, YANG X J, ZHOU F. Psychophysiological responses to takeover requests in conditionally automated driving[J]. Accident Analysis & Prevention, 2020, 148: 105804. [58] KÖRBER M, GOLD C, LECHNER D, et al. The influence of age on the take-over of vehicle control in highly automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 39: 19- 32. [59] RADLMAYR J, GOLD C, LORENZ L, et al. How traffic situations and non- driving related tasks affect the takeover quality in highly automated driving[C]. California: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2014. [60] DOUBEK F, LOOSVELD E, HAPPEE R, et al. Take over quality: Assessing the effects of time budget and traffic density with the help of a trajectory planning method[J]. Journal of Advanced Transportation, 2020, 2020(1): 1- 12. [61] GOLD C, KÖRBER M, LECHNER D, et al. Taking over control from highly automated vehicles in complex traffic situations: The role of traffic density[J]. Human Factors, 2016, 58(4): 642-652. [62] MARTENS M H, COMPTE S, KAPTEIN N A. The effects of road design on speed behaviour: A literature review[J]. Institute for Road Safety Research, 1997, 36: 1-27. [63] BRANDENBURG S, CHUANG L. Take-over requests during highly automated driving: How should they be presented and under what conditions?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66: 214-225. [64] NAUJOKS F, MAI C, NEUKUM A. The effect of urgency of take-over requests during highly automated driving under distraction conditions[C]. Poland: Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics, 2014. [65] BOROJENI S S, BOLL S C J, HEUTEN W, et al. Feel the movement: Real motion influences responses to take-over requests in highly automated vehicles[C]. New York: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018. [66] LOUW T, MERAT N. Are you in the loop? Using gaze dispersion to understand driver visual attention during vehicle automation[J]. Transportation Research Part C: Emerging Technologies, 2017, 76: 35-50. [67] FAVARÒ F, EURICH S, NADER N. Autonomous vehicles' disengagements: Trends, triggers, and regulatory limitations[J]. Accident Analysis & Prevention, 2018, 110: 136-148. [68] WIJBENGA A, VREESWIJK J, MINTSIS E, et al. Traffic management of automated vehicles in transition areas[R]. Berlin: German Aerospace Center, 2020 [69] VREESWIJK J, WIJBENGA A, SCHINDLER J. Cooperative automated driving for managing transition areas and the operational design domain (ODD) [C]. Helsinki: Proceedings of 8th Transport Research Arena TRA, 2020. [70] LÜCKEN L, SCHWAMBORN M, MINTSIS E, et al. TransAID deliverable 6.2/2- assessment of traffic management procedures in transition areas[R]. Berlin: German Aerospace Center, 2021. [71] COLL-PERALES B, SCHULTE-TIGGES J, RONDINONE M, et al. Prototyping and evaluation of infrastructure- assisted transition of control for cooperative automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 99: 1-17. [72] MAERIVOET S, AKKERMANS L, CARLIERS K, et al. TransAID deliverable 4.1-overview of existing and enhanced traffic management procedures[R]. Berlin: German Aerospace Center, 2018. [73] WIJBENGA A, VREESWIJK J, SCHINDLER J, et al. 3.3.2 Centralized infrastructure-assisted management for mixed traffic at transition areas[C]. Italy: 2nd Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS 2018), 2018. [74] CORREA A, MAERIVOET S, MINTSIS E, et al. Management of transitions of control in mixed traffic with automated vehicles[C]. Lisboa: 2018 16th International Conference on Intelligent Transportation Systems Telecommunications, 2018. [75] LÜCKEN L, MINTSIS E, KALLIRROI N P, et al. From automated to manual-modeling control transitions with sumo[C]. Berlin: SUMO User Conference, 2019 [76] CASERINI S. Cooperative traffic control solution for vehicle transition from autonomous to manual mode exploiting cellular vehicle-to- everything (C-V2X) technology[D]. Ontario: University of Windsor, 2019. [77] 庞明宝, 柴紫欣, 巩丹阳. 混合交通下智能网联车借道公交专用车道控制[J]. 交通运输系统工程与信息, 2021, 21(4): 118-124. [PANG M B, CHAL Z X, GONG D Y. Control of connected and automated vehicles driving on dedicated bus lane under mixed traffic[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 118-124.] [78] FORSTER Y, NAUJOKS F, NEUKUM A, et al. Driver compliance to take- over requests with different auditory outputs in conditional automation[J]. Accident Analysis & Prevention, 2017, 109: 18-28. [79] YOON S H, KIM Y W, JI Y G. The effects of takeover request modalities on highly automated car control transitions[J]. Accident Analysis & Prevention, 2019, 123: 150-158. [80] ROCHE F, BRANDENBURG S. Should the urgency of visual-tactile takeover requests match the criticality of takeover situations?[J]. IEEE Transactions on Intelligent Vehicles, 2019, 5(2): 306-313. [81] LEE J, YUN H, KIM J, et al. Design of single-modal takeover request in SAE level 2 & 3 automated vehicle[J]. Transactions of the Korean Society of Automotive Engineers, 2019, 27(3): 171-183. [82] LEE J, YANG J H. Analysis of driver's EEG given takeover alarm in SAE level 3 automated driving in a simulated environment[J]. International Journal of Automotive Technology, 2020, 21(3): 719-728. [83] LOUW T, KUO J, ROMANO R, et al. Engaging in NDRTs affects drivers' responses and glance patterns after silent automation failures[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62: 870-882. [84] MESCHTSCHERJAKOV A, DÖTTLINGER C, RÖDEL C, et al. ChaseLight: Ambient LED stripes to control driving speed[C]. New York: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2015. [85] MUTHUMANI A, DIEDERICHS F, GALLE M, et al. How visual cues on steering wheel improve users' trust, experience, and acceptance in automated vehicles[C]. Cham: International Conference on Applied Human Factors and Ergonomics, 2020. [86] YANG Y, KARAKAYA B, DOMINIONI G C, et al. An HMI concept to improve driver's visual behavior and situation awareness in automated vehicle[C]. Maui: 21st International Conference on Intelligent Transportation Systems (ITSC), 2018. [87] HE D, KANAAN D, DONMEZ B. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles[J]. Accident Analysis & Prevention, 2021, 149: 105842. [88] WICKENS C D. Multiple resources and performance prediction[J]. Theoretical Issues in Ergonomics Science, 2002, 3(2): 159-177. [89] POLITIS I, BREWSTER S, POLLICK F. Language-based multimodal displays for the handover of control in autonomous cars[C]. New York: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2015. [90] BALDWIN C L. Verbal collision avoidance messages during simulated driving: Perceived urgency, alerting effectiveness and annoyance[J]. Ergonomics, 2011, 54(4): 328-337. [91] BAZILINSKYY P, DE WINTER J C F. Analyzing crowdsourced ratings of speech-based take-over requests for automated driving[J]. Applied Ergonomics, 2017, 64: 56-64. [92] LJUNGBERG J K, PARMENTIER F B R, HUGHES R W, et al. Listen out! Behavioural and subjective responses to verbal warnings[J]. Applied Cognitive Psychology, 2012, 26(3): 451-461. [93] RICHIE E, OFFER-WESTORT T, SHANKAR R, et al. Auditory displays for take-over in semi-automated vehicles[C]. Cham: International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, 2018. [94] LEE J D, GORE B F, CAMPBELL J L. Display alternatives for in-vehicle warning and sign information: Message style, location, and modality[J]. Transportation Human Factors, 1999, 1(4): 347-375. [95] BAZILINSKYY P, PETERMEIJER S M, PETROVYCH V, et al. Take-over requests in highly automated driving: A crowdsourcing survey on auditory, vibrotactile, and visual displays[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 56: 82-98. [96] BOROJENI S S, WALLBAUM T, HEUTEN W, et al. Comparing shape-changing and vibrotactile steering wheels for take-over requests in highly automated driving [C]. Oldenburg: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2017. [97] PETERMEIJER S, BAZILINSKYY P, BENGLER K, et al. Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop[J]. Applied Ergonomics, 2017, 62: 204-215. [98] PETERMEIJER S M, CIELER S, DE WINTER J C F.Comparing spatially static and dynamic vibrotactile takeover requests in the driver seat[J]. Accident Analysis & Prevention, 2017, 99: 218-227. [99] KUNZE A, SUMMERSKILL S J, MARSHALL R, et al. Preliminary evaluation of variables for communicating uncertainties using a haptic seat[C]. Toronto: Adjunct Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2018. [100] COHEN- LAZRY G, KATZMAN N, BOROWSKY A, et al. Directional tactile alerts for take-over requests in highly-automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65: 217- 226. [101] KRÜGER M, DRIESSEN T, WIEBEL- HERBOTH C B, et al. Feeling uncertain-effects of a vibrotactile belt that communicates vehicle sensor uncertainty[J]. Information, 2020, 11(7): 353-377. [102] LIAO S. CYCSIGHT: Designing a haptic wristband with a detachable radar to improve hearing-impaired cyclists' road safety[J]. Georgia Institute of Technology, 2020: 1- 157. [103] TANG Q, GUO G, ZHANG Z, et al. Olfactory facilitation of takeover performance in highly automated driving[J]. Human Factors, 2021, 64(3): 553-564. [104] WINTERSBERGER P, DMITRENKO D, SCHARTMÜLLER C, et al. S(C)ENTINEL: Monitoring automated vehicles with olfactory reliability displays[C]. California: Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019. [105] BAEK S J, YUN H, YANG J H. How do humans respond when automated vehicles request an immediate vehicle control take- over?[C]. Utrecht: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings, 2019. [106] KIM J W, YANG J H. Understanding metrics of vehicle control take- over requests in simulated automated vehicles[J]. International Journal of Automotive Technology, 2020, 21(3): 757-770. [107] YUN H, YANG J H. Multimodal warning design for takeover request in conditionally automated driving[J]. European Transport Research Review, 2020, 12: 1-11. [108] BARBER D, BEST A. Connected and automated vehicle simulation to enhance vehicle message delivery[C]. Cham: International Conference on Applied Human Factors and Ergonomics, 2017. [109] SHARMA A, ALI Y, SAIFUZZAMAN M, et al. Human factors in modelling mixed traffic of traditional, connected, and automated vehicles[C]. Cham: International Conference on Applied Human Factors and Ergonomics, 2017. [110] OLAVERRI-MONREAL C, JIZBA T. Human factors in the design of human-machine interaction: An overview emphasizing V2X communication[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(4): 302-313. [111] JIZBA T. Influence of HMI ergonomy on drivers in cooperative systems area[J]. Acta Polytechnica CTU Proceedings, 2017, 12: 42-49. [112] WEIDNER F, BROLL W. Stereoscopic 3D dashboards an investigation of performance, workload, and gaze behavior during take-overs in semi-autonomous driving [J/OL]. Personal and Ubiquitous Computing, (2020-8-25) [2021-10-8]. https://link.springer.com. [113] PARK J, ABDEL-ATY M, WU Y, et al. Enhancing invehicle driving assistance information under connected vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3558-3567. [114] KIM S, VAN EGMOND R, HAPPEE R. Effects of user interfaces on take-over performance: A review of the empirical evidence[J]. Information, 2021, 12(4): 162. [115] WINTERSBERGER P, SCHARTMÜLLER C, RIENER A. Attentive user interfaces to improve multitasking and take-over performance in automated driving: The autonet of things[J]. International Journal of Mobile Human Computer Interaction, 2019, 11(3): 40-58. [116] HOLMES L T M, HARWOOD L C, KLAUER S G, et al. Connected vehicle systems: Evaluation of display location and application type on driving performance [J]. Transportation Research Record, 2014, 2424(1): 39- 47. [117] PAYRE W, DIELS C. Designing in- vehicle signs for connected vehicle features: Does appropriateness guarantee comprehension?[J]. Applied Ergonomics, 2019, 80: 102-110. [118] 葛慧敏, 郑明强, 吕能超, 等. 驾驶分心综述[J]. 交通运输工程学报, 2021, 21(2): 38-55. [GE H M, ZHENG M Q, LV N C, et al. Review on driving distractions[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 38-55.] [119] SINGH H, BHATIA J S, KAUR J. Eye tracking based driver fatigue monitoring and warning system[C]. New Delhi: 2010 India International Conference on Power Electronics, 2011. [120] ZHANG F, SU J, GENG L, et al. Driver fatigue detection based on eye state recognition[C]. Singapore: 2017 International Conference on Machine Vision and Information Technology (CMVIT), 2017. [121] GALARZA E E, EGAS F D, SILVA F M, et al. Real time driver drowsiness detection based on driver's face imagebehavior using a system of human computer interaction implemented in a smartphone[C]. Cham: International Conference on Information Technology & Systems, 2018. [122] KHUNPISUTH O, CHOTCHINASRI T, KOSCHAKOSAI V, et al. Driver drowsiness detection using eye-closeness detection[C]. Naples: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems, 2016. [123] BABAEIAN M, BHARDWAJ N, ESQUIVEL B, et al. Real time driver drowsiness detection using a logistic-regression-based machine learning algorithm[C]. California: 2016 IEEE Green Energy and Systems Conference, 2016. [124] 关伟, 杨柳, 江世雄, 等. 脑电在交通驾驶行为中的应用研究综述[J]. 交通运输系统工程与信息, 2016, 16 (3): 35- 44. [GUAN W, YANG L, JIANG S X, et al. Review on the application of EEG in traffic driving behavior study[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(3): 35-44.] [125] WANG W, NA X, CAO D, et al. Decision-making in driver-automation shared control: A review and perspectives[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1-19. [126] MARCANO M, DÍAZ S, PÉREZ J, et al. A review of shared control for automated vehicles: Theory and applications[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(6): 475-491. [127] KONDO R, WADA T, SONODA K. Use of haptic shared control in highly automated driving systems[J]. IFACPapersOnLine, 2019, 52(19): 43-48. [128] LI Y, LV C, XUE J. A novel predictive haptic control interface for automation-to-human takeover of automated vehicles[C]. Paris: 2019 IEEE Intelligent Vehicles Symposium (IV), 2019. [129] OKADA K, SONODA K, WADA T. Transferring from automated to manual driving when traversing a curve via haptic shared control[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6(2): 266-275. |
[1] | 杨枫, 种大双. 应急车辆动态路径选择的两阶段优化模型[J]. 交通运输系统工程与信息, 2022, 22(3): 84-92. |
[2] | 刘宜成, 李志鹏, 吕淳朴, 张涛, 刘彦. 基于动态时间调整的时空图卷积路网交通流量预测[J]. 交通运输系统工程与信息, 2022, 22(3): 147-157. |
[3] | 姚荣涵, 王荣贇, 张文松, 叶劲松, 孙锋. 基于生成对抗网络的交通流参数实时估计模型[J]. 交通运输系统工程与信息, 2022, 22(3): 158-167. |
[4] | 谢东繁, 贾惠迪, 李春艳, 赵小梅. 基于网格交通状态分类的行程时间规律挖掘与计算[J]. 交通运输系统工程与信息, 2022, 22(3): 168-178. |
[5] | 谢济铭, 彭博, 秦雅琴. 基于换道概率分布的多车道交织区元胞自动机模型[J]. 交通运输系统工程与信息, 2022, 22(3): 276-285. |
[6] | 徐猛, 刘涛, 钟绍鹏, 姜宇. 城市智慧公交研究综述与展望[J]. 交通运输系统工程与信息, 2022, 22(2): 91-108. |
[7] | 程君, 张立炎, 陈启宏. 一种基于地图辅助的自动驾驶视-惯融合定位方法[J]. 交通运输系统工程与信息, 2022, 22(2): 117-126. |
[8] | 王国栋, 刘立, 孟宇, 马智萍, 郑淏清, 顾青, 白国星. 一体式车辆避撞轨迹规划与跟踪控制[J]. 交通运输系统工程与信息, 2022, 22(2): 127-136. |
[9] | 马东方, 陈曦, 吴晓东, 金盛. 基于强化学习的干线信号混合协同优化方法[J]. 交通运输系统工程与信息, 2022, 22(2): 145-153. |
[10] | 许波桅, 王玲玲, 李军军. 自动化码头多级作业超网络延误传导特性研究[J]. 交通运输系统工程与信息, 2022, 22(2): 280-289. |
[11] | 田会娟, 刘嘉伟, 翟佳豪, 邓琳琳. 基于多入侵线的视频车速检测方法[J]. 交通运输系统工程与信息, 2022, 22(1): 49-56. |
[12] | 贾彦峰, 曲大义, 赵梓旭, 王韬, 宋慧. 基于安全势场的网联自主车辆跟驰行为决策及模型[J]. 交通运输系统工程与信息, 2022, 22(1): 85-97. |
[13] | 刘文, 汪文博. 基于秩最小化矩阵去噪的船舶轨迹重构方法[J]. 交通运输系统工程与信息, 2022, 22(1): 106-114. |
[14] | 赵建东, 陈溱, 焦彦利, 张凯丽, 韩明敏. 重点营运车辆的异常驾驶行为识别研究[J]. 交通运输系统工程与信息, 2022, 22(1): 282-291. |
[15] | 徐东伟, 彭航, 商学天, 魏臣臣, 杨艳芳. 基于图自编码-生成对抗网络的路网数据修复[J]. 交通运输系统工程与信息, 2021, 21(6): 33-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||