[1] 彭宏勤, 张国伍. 新技术对“十四五”及2035年交通运输系统发展的影响:“交通7+1论坛”第五十七次会议
[J]. 交通运输系统工程与信息, 2021, 21(4): 1- 5.
[PENG H Q, ZHANG G W. Influence of new
technologies on development of transportation in the 14thfive years and 2035[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(4):
1-5.]
[2] 王庆云,毛保华. 科技进步对交通运输系统发展的影响[J]. 交通运输系统工程与信息, 2020, 20(6): 1-8.
[WANG Q Y, MAO B H. Impacts of science and
technology on transportation[J]. Journal of Transportation
Systems Engineering and Information Technology, 2020,
20(6): 1-8.]
[3] 亿欧智库. 2019年中国智慧城市发展研究报告[R]. 亿欧智库, 2019. [EqualOcean Intelligence. 2019 Chinese
smart city development research report[R]. EqualOcean
Intelligence, 2019.]
[4] 陆化普, 孙智源, 屈闻聪. 大数据及其在城市智能交通系统中的应用综述[J]. 交通运输系统工程与信息,
2015, 15(5): 45-52. [LU H P,SUN Z Y,QU W C. Big
data and its applications in urban intelligent
transportation system[J]. Journal of Transportation
Systems Engineering and Information Technology, 2015,
15(5): 45-52.]
[5] WELCH T F, WIDITA A. Big data in public
transportation: A review of sources and methods[J].
Transport Reviews, 2019, 39(6): 795-818.
[6] YAP M, MUNIZAGA M. Big data in the digital age and
how it can benefit public transport users[J]. Research in
Transportation Economics, 2018, 69: 615-620.
[7] 吴存钱,陈利强,俞峥嵘,等. 基于公交数据大脑的云调度平台建设[J]. IT经理世界, 2021(2): 1-2. [WU C Q,
CHEN L Q, YU Z R, et al. Cloud scheduling platform
construction based on bus data brain[J]. CEO & CIO,
2021(2): 1-2.]
[8] 百度百科. 智慧公交[OL]. (2021-09-21) [2021-12-
15]. https://baike.baidu.com/item/% E6% 99% BA% E6%
85% A7% E5% 85% AC% E4% BA% A4/13212511?fr=
aladdin. [Baidu Encyclopedia. Smart transit[OL]. (2021-
09- 21) [2021- 12- 15]. https://baike.baidu.com/item/% E6%99%BA%E6%85%A7%E5%85%AC%E4%BA% A4/13212511?fr=aladdin.]
[9] ZENG X. Evaluation of bus service capability based on
IC card and GPS data[D]. Xi'an: Chang' an University,
2019.
[10] CHAPLEAU R, CHU K, ALLARD B. Synthesizing AFC,
APC, GPS and GIS data to generate performance and
travel demand indicators for public transit[C]//
Transportation Research Board Meeting, 2011.
[11] AGARD B, MORENCY C, TRÉPANIER M. Mining
public transport user behaviour from smart card data[J].
IFAC Proceedings Volumes, 2006, 39(3): 399-404.
[12] LEE S G, HICKMAN M D. Travel pattern analysis using
smart card data of regular users[C]. TRB 2011 Annual
Meeting, 2011.
[13] KURAUCHI F, SCHMÖCKER J D, SHIMAMOTO H,
et al. Variability of commuters' bus line choice: An
analysis of oyster card data[J]. Public Transport, 2014, 6 (1/2): 21-34.
[14] MA X, LIU C, WEN H, et al. Understanding commuting
patterns using transit smart card data[J]. Journal of
Transport Geography, 2017, 58: 135-145.
[15] BRIAND A S, CÔME E, TRÉPANIER M, et al.
Analyzing year-to-year changes in public transport
passenger behaviour using smart card data[J].
Transportation Research Part C: Emerging Technologies,
2017, 79: 274-289.
[16] GAO S C. Study on bus passenger flow analysis and shortterm prediction based on multi-source data[D]. Huhhot:
Inner Mongolia University of Technology, 2020.
[17] FAROQI H, MESBAH M, KIM J. Investigating the
correlation between activity similarity and trip similarity
of public transit passengers using smart card data[J].
Transportation Research Procedia, 2020, 48: 2621-2637.
[18] 黄益绍, 韩磊. 基于改进极限学习机的公交站点短时客流预测方法[J]. 交通运输系统工程与信息,
2019, 19(4): 115-123. [HUANG Y S, HAN L. Short-term
passenger flow prediction method on bus stop based on
improved extreme learning machine[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2019, 19(4): 115-123.]
[19] LI Y. Feature analysis and optimization discriminant
method of ultra-long bus routes based on intelligent bus
data[D]. Chengdu: Southwest Jiaotong University, 2019.
[20] XIANG Y. Research on customized bus route
optimization based on BUS IC card data driven by
passenger flow demand[D]. Beijing: Beijing Jiaotong
University, 2020.
[21] HUAN N, YAO E J, ZHANG J M. Demand-responsive
passenger flow control strategies for metro networks
considering service fairness and passengers' behavioural
responses[J]. Transportation Research Part C: Emerging
Technologies, 2021, 131: 103335.
[22] 庞明宝, 陈茂林, 张宁. 基于 MAST 的智慧公交优化调度研究[J]. 交通运输系统工程与信息, 2017, 17(1):
143-149. [PANG M B, CHEN M L, ZHANG N.
Scheduling optimization of intelligent public transport
system based on MAST[J]. Journal of Transportation
Systems Engineering and Information Technology, 2017,
17(1): 143-149.]
[23] 马晓磊, 丁川, 于海洋, 等. 公共交通大数据挖掘与分析[M]. 北京: 人民交通出版社, 2017. [MA X L, DING
C, YU H Y, et al. Public transportation big data mining
and analysis[M]. Beijing: China Communications Press,
2017. ]
[24] GUIDO G, ROGANO D, VITALE A, et al. Big data for
public transportation: A DSS framework[C]//2017 5th
IEEE International Conference on Models andTechnologies for Intelligent Transportation Systems (MTITS), IEEE, 2017: 872-877.
[25] WEPULANON P, SUMALEE A, LAM W HK. Temporal
signatures of passive Wi-Fi data for estimating bus
passenger waiting time at a single bus stop[J]. IEEE
Transactions on Intelligent Transportation Systems,
2019, 21(8): 3366-3376.
[26] BIE Y, GONG X, LIU Z. Time of day intervals partition
for bus schedule using GPS data[J]. Transportation
Research Part C: Emerging Technologies, 2015, 60: 443-
456.
[27] QI G, HUANG A, GUAN W, et al. Analysis and
prediction of regional mobility patterns of bus travellers
using smart card data and points of interest data[J]. IEEE
Transactions on Intelligent Transportation Systems,
2018, 20(4): 1197-1214.
[28] WU W, LIU R, JIN W, et al. Stochastic bus schedule
coordination considering demand assignment and
rerouting of passengers[J]. Transportation Research Part
B: Methodological, 2019, 121: 275-303.
[29] 杨信丰, 李引珍, 何瑞春. 基于服务水平的区域公交协调调度优化研究[J]. 系统工程, 2017, 35(6): 89-96.
[YANG X F, LI Y Z, HE R C. Research on regional
public transit coordinated scheduling optimization based
on service level[J]. Systems Engineering, 2017, 35(6):
89-96. ]
[30] JIN J G, TEO, K M, et al. Optimizing bus bridging
services in response to disruptions of urban transit rail
networks[J]. Transportation Science, 2016, 50(3): 790-
804.
[31] XIONG J, CHEN B, HZ Z, et al. Optimal design of
community shuttles with an adaptive- operator-selectionbased genetic algorithm[J]. Transportation Research Part
C: Emerging Technologies, 2021, 126: 103109.
[32] KANG L, LI H, SUN H, et al. First train timetabling
and bus service bridging in intermodal bus-and-train
transit networks[J]. Transportation Research Part B:
Methodological, 2021, 149: 443-462.
[33] LIU T, CATS O, GKIOTSALITIS K. A review of public
transport transfer coordination at the tactical planning
phase[J]. Transportation Research Part C: Emerging
Technologies, 2021, 133: 103450.
[34] 邬群勇, 万云鹏. 基于多指标协同的公交大站快车站点推荐方法[J]. 交通运输系统工程与信息, 2021,
21(1): 162-168. [WU Q Y, WAN Y P. Stop selection
of limited-stop bus services based on multi-criteria
collaboration[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(1):
162-168.]
[35] WU W, LIU R, JIN W. Designing robust schedule
coordination scheme for transit networks with safety
control margins[J]. Transportation Research Part B:
Methodological, 2016, 93: 495-519.
[36] 胡笳, 罗书源, 赖金涛, 等. 自动驾驶对交通运输系统规划的影响综述[J]. 交通运输系统工程与信息, 2021,
21(5): 52-65. [HU J, LUO S Y, LAI J T, et al. A review
of the impact of autonomous driving on transportation
planning[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(5):
52-65.]
[37] WU J, KULCSÁR B, QU X. A modular, adaptive,
and autonomous transit system (MAATS): A in-motion
transfer strategy and performance evaluation in urban
grid transit networks[J]. Transportation Research Part A:
Policy and Practice, 2021, 151: 81-98.
[38] LIU T, Ceder A. Analysis of a new public-transportservice concept: Customized bus in China[J]. Transport
Policy, 2015, 39: 63-76.
[39] QIU G, SONG R, HE S, et al. Clustering passenger trip
data for the potential passenger investigation and line
design of customized commuter bus[J]. IEEE
Transactions on Intelligent Transportation Systems,
2018, 20(9): 3351-3360.
[40] WANG J, YAMAMOTO T, LIU K. Key determinants and
heterogeneous frailties in passenger loyalty toward
customized buses: An empirical investigation of the
subscription termination hazard of users[J].
Transportation Research Part C: Emerging Technologies,
2020, 115: 102636.
[41] WANG J, YAMAMOTO T, LIU K. Spatial dependence
and spillover effects in customized bus demand:
Empirical evidence using spatial dynamic panel models
[J]. Transport Policy, 2021, 105: 166-180.
[42] HUANG D, GU Y, WANG S, et al. A two-phase
optimization model for the demand-responsive
customized bus network design[J]. Transportation
Research Part C: Emerging Technologies, 2020, 111: 1-21.
[43] GUO R, ZHANG W, GUAN W, et al. Time- dependent
urban customized bus routing with path flexibility[J].
IEEE Transactions on Intelligent Transportation
Systems, 2020, 22(4): 2381-2390.
[44] DOU X, MENG Q, LIU K. Customized bus service
design for uncertain commuting travel demand[J].
Transportmetrica A: Transport Science, 2021, 17(4):
1405-1430.
[45] CHEN X, WANG Y, MA X. Integrated optimization for
commuting customized bus stop planning, routing design,
and timetable development with passenger spatialtemporal accessibility[J]. IEEE Transactions on
Intelligent Transportation Systems, 2021, 22(4): 2060-
2075.
[46] WANG Z, et al. Joint optimization of running route and
scheduling for the mixed demand responsive feedertransit with time- dependent travel times[J]. IEEE
Transactions on Intelligent Transportation Systems,
2020, 22(4): 2498-2509.
[47] 王健, 曹阳, 王运豪. 考虑出行时间窗的定制公交线路车辆调度方法[J]. 中国公路学报, 2018, 31(5): 143-
150. [WANG J, CAO Y, WANG Y H. Customized bus
route vehicle schedule method considering travel time
windows[J]. China Journal of Highway and Transport,
2018, 31(5): 143-150.]
[48] 马昌喜, 王超, 郝威, 等. 突发公共卫生事件下应急定制公交线路优化[J]. 交通运输工程学报, 2020, 20(3):
89-99. [MA C X, WANG C, HAO W, et al. Emergency
customized bus route optimization under public health
emergencies[J]. Journal of Traffic and Transportation
Engineering, 2020, 20(3): 89-99.]
[49] 李瑞敏. 出行即服务(MaaS)概论[M]. 北京: 人民交通出版社, 2020. [LI R M. Introduction to mobility as a
service (MaaS) [M]. Beijing: China Communications
Press, 2020. ]
[50] 刘向龙. 出行即服务(MaaS)研究与探索[M]. 北京: 人民交通出版社, 2021. [LIU X L. Research on mobility as a
service (MaaS) [M]. Beijing: China Communications
Press, 2021.]
[51] 周里捷, 姚振平. 大型活动地面公共交通运营组织与调度系统[M]. 北京: 电子工业出版社, 2011. [ZHOU L
J, YAO Z P. Road surface public transportation
operations organization and scheduling systems for large
events[M]. Beijing: Publishing House of Electronics
Industry, 2011.]
[52] WANG F Y, TANG S, SUI Y, et al. Toward intelligent
transportation systems for the 2008 Olympics[J]. IEEE
Intelligent Systems, 2003, 18(6): 8-11.
[53] ZHU F, CHEN S, MAO Z H, et al. Parallel public
transportation system and its application in evaluating
evacuation plans for large-scale activities[J]. IEEE
Transactions on Intelligent Transportation Systems,
2014, 15(4): 1728-1733.
[54] GU W, YU J, JI Y, et al. Plan-based flexible bus bridging
operation strategy[J]. Transportation Research Part C:
Emerging Technologies, 2018, 91: 209-229.
[55] LIANG J, WU J, QU Y, et al. Robust bus bridging service
design under rail transit system disruptions[J].
Transportation Research Part E: Logistics and
Transportation Review, 2019, 132: 97-116.
[56] 何祖勇, 郭茜, 吴刚. 考虑时间容忍度的轨道交通应急接驳公交蓄车点选址研究[J]. 交通运输工程与信息学报, 2022, 20(1): 80-88. [HE Z Y, GUO Q, WU G. Depot
location of emergency bridging bus for urban rail transit
considering time tolerance[J]. Journal of Transportation
Engineering and Information, Available Online, 2022, 20
(1): 80-88.]
[57] LEE Y J, VUCHIC V R. Transit network design with
variable demand[J]. Journal of Transportation
Engineering, 2005, 131(1): 1-10.
[58] OWAIS M, OSMAN M K. Complete hierarchical multiobjective genetic algorithm for transit network design
problem[J]. Expert Systems with Applications, 2018,
114: 143-154.
[59] YAO B, HU P, LU X, et al. Transit network design based
on travel time reliability[J]. Transportation Research Part
C: Emerging Technologies, 2014, 43: 233-248.
[60] FENG X, ZHU X, QIAN X, et al. A new transit network
design study in consideration of transfer time composition
[J]. Transportation Research Part D: Transport and
Environment, 2019, 66: 85-94.
[61] KOUTSOPOULOS H N, ODONI A, WILSON N H M.
Determination of headways as function of time varying
characteristics on a transit network[J]. Computer
Scheduling of Public Transport, 1985, 2(1): 391-413.
[62] GKIOTSALITIS K. Coordinating feeder and collector
public transit lines for efficient MaaS services[R]//100th
Transportation Research Board (TRB) Annual Meeting,
2021.
[63] DAKIC I, YANG K, MENENDEZ M, et al. On the
design of an optimal flexible bus dispatching system
with modular bus units: Using the three-dimensional
macroscopic fundamental diagram[J]. Transportation
Research Part B: Methodological, 2021, 148: 38-59.
[64] JHA S B, JHA J K, TIWARI M K. A multi-objective metaheuristic approach for transit network design and
frequency setting problem in a bus transit system[J].
Computers & Industrial Engineering, 2019, 130(4): 166-
186.
[65] CHAI S, LIANG Q. An improved NSGA-II algorithm for
transit network design and frequency setting problem[J].
Journal of Advanced Transportation, 2020, 2020(4): 1-
20.
[66] LIU Y, FENG X, DING C, et al. Electric transit network
design by an improved artificial fish-swarm algorithm[J].
Journal of Transportation Engineering Part A: Systems,
2020, 146(8): 04020071.
[67] HATZENBUHLER J, CATS O, JENELIUS E. Network
design for line-based autonomous bus services[J/OL].
Transportation, 2021:1-36.
[68] QUAK C B. Bus line planning: A passenger-oriented
approach of the construction of a global line network and
an efficient timetable [D]. Delft: Delft University, 2004.
[69] GUDEN H, KEECI B, KARATAS M, et al. Inter-city bus
scheduling with central city location and trip selection[J].
International Journal of Industrial Engineering: Theory,
Applications and Practice, 2021, 27(6): 959-970.
[70] VERBAS F C, MAHMASSANI H S, CHAN R. Stretching
resources: Sensitivity of optimal bus frequency
allocation to stop-level demand elasticities[J]. PublicTransport, 2015, 7(1): 1-20.
[71] TIAN Q, WANG D Z W, LIN Y H. Service operation
design in a transit network with congested common lines
[J]. Transportation Research Part B: Methodological,
2021, 144: 81-102.
[72] PARBO J, NIELSEN O A, PRATO C G. User
perspectives in public transport timetable optimization
[J]. Transportation Research Part C: Emerging
Technologies, 2014, 48: 269-284.
[73] TENG J, CHEN T, FAN W D. Integrated approach to
vehicle scheduling and bus timetabling for an electric
bus line[J]. Journal of Transportation Engineering, 2020,
146(2): 04019073.
[74] 吴玲玲,黄正东. 基于多样性的大城市公共交通服务水平研究[J]. 交通运输系统工程与信息, 2019, 19(1):
222-227. [WU L L, HUANG Z D. Diversity as an
indicator of urban public transit service quality[J].
Journal of Transportation Systems Engineering and
Information Technology, 2019, 19(1): 222-227.]
[75] 杨晓光, 安健, 刘好德, 等. 公交运行服务质量评价指标体系探讨[J]. 交通运输系统工程与信息, 2010, 10
(4): 13- 21. [YANG X G, AN J, LIU H D, et al.
Evaluation architecture discussion of route-level transit
service quality[J]. Journal of Transportation Systems
Engineering and Information Technology, 2010, 10(4):
13-21]
[76] GU Z Y. Analysis and evaluation method of operation
characteristics of conventional bus system[D]. Chengdu:
Southeast University, 2015.
[77] HUO Y, LI W, CHEN Q. Modeling customer satisfaction
for bus rapid transit in Changzhou, China[J]. Journal of
Southeast University, 2016, 32(2): 233-239.
[78] ZHOU Y Y, YAO L, CHEN Y Y, et al. Bus arrival time
calculation model based on smart card data[J].
Transportation research Part C: Emerging Technologies,
2017, 74: 81-96.
[79] KIM J, CORCORAN J. PAPAMANOLIS M. Route choice
stickiness of public transport passengers: Measuring
habitual bus ridership behaviour using smart card data
[J]. Transportation Research Part C: Emerging
Technologies, 2017, 83: 146-164.
[80] WANG H. Research on bus passenger flow analysis and
bus operation evaluation based on big data[D]. Lanzhou:
Lanzhou Jiaotong University, 2018.
[81] SHI Q, ZHANG K, WENG J, et al. Evaluation model of
bus routes optimization scheme based on multi-source
bus data[J]. Transportation Research Interdisciplinary
Perspectives, 2021, 10(1): 100342.
[82] ELTVED M, LEMAITRE P, PETERSEN N C. Estimation
of transfer walking time distribution in multimodal public
transport systems based on smart card data[J].
Transportation Research Part C, 2021, 132: 103332.
[83] ZHANG X. Research on evaluation of intelligent
behavior of unmanned vehicle through special region [D].
Beijing: Beijing Institute of Technology, 2015.
[84] LI L, LO H K, XIAO F, et al. Mixed bus fleet
management strategy for minimizing overall and
emissions external costs[J]. Transportation Research Part
D: Transport and Environment, 2016, 60: 104-118.
[85] SHEN Y, ZHANG H, ZHAO J. Integrating shared
autonomous vehicle in public transportation system:
A supply-side simulation of the first-mile service in
Singapore[J]. Transportation Research Part A: Policy and
Practice, 2018, 113: 125-136.
[86] BERTSIMAS D, SIAN N Y, YAN J. Joint frequencysetting and pricing optimization on multimodal transit
networks at scale[J]. Transportation Science, 2020, 54(3):
839-853.
[87] 毛保华. 公共交通服务能力是交通强国战略的重要标志[J]. 北京交通大学学报(社科版), 2018, 17(3): 1-8.
[MAO B H. Public transport capacity is an important
indicator of national strength in transport[J]. Journal of
Beijing Jiaotong University (Social Science Edition),
2018, 17(3): 1-8.]
[88] 毛保华, 孟冉, 陈海波. 城市轨道交通中信息技术的应
用与规范化管理[J]. 北京交通大学学报(社科版),
2020, 19(4): 15-22. [MAO B H, MENG R, CHEN H B.
Application and standardized management of information
technologies in urban rail transit[J]. Journal of Beijing
Jiaotong University (Social Science Edition), 2020, 19(4):
15-22.]
[89] 王庆云, 毛保华, 张国伍. 我国交通运输系统工程的演化[J]. 交通运输系统工程与信息, 2021, 21(5): 2-11.
[WANG Q Y, MAO B H, ZHANG G W. Evolution of
transportation systems engineering in China[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2021, 21(5): 2-11.]
[90] 毛保华, 王敏, 何天健, 等. 城市公共交通服务水平研究回顾和展望[J]. 交通运输系统工程与信息, 2022, 22
(1): 2-13. [MAO B H , WANG M, HO T K , et al. A
review and prospect of urban public transit level-ofservice research[J]. Journal of Transportation Systems
Engineering and Information Technology, 2022, 22(1): 2-
13.]
|