交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (3): 20-29.DOI: 10.16097/j.cnki.1009-6744.2023.03.003

• 交通运输业高质量发展策略 • 上一篇    下一篇

考虑排放控制区的绿色多式联运路径和速度优化

吴鹏*1,李泽1,季海涛2   

  1. 1.福州大学,经济与管理学院,福州350108;2.中广核陆丰核电有限公司,广东汕尾516500
  • 收稿日期:2022-12-29 修回日期:2023-03-25 接受日期:2023-04-04 出版日期:2023-06-25 发布日期:2023-06-22
  • 作者简介:吴鹏(1987-),男,江西丰城人,教授,博士
  • 基金资助:
    国家社会科学基金 (22BGL272)

Route and Speed Optimization for Green Intermodal Transportation Considering Emission Control Area

WU Peng*1, LI Ze1, JI Hai-tao2   

  1. 1. School of Economics and Management, Fuzhou University, Fuzhou 350108, China; 2. CGN Lufeng Nuclear Power Co. Ltd, Shanwei 516500, Guangdong, China
  • Received:2022-12-29 Revised:2023-03-25 Accepted:2023-04-04 Online:2023-06-25 Published:2023-06-22
  • Supported by:
    National Social Science Foundation of China (22BGL272)

摘要: 针对考虑排放控制区的绿色公海多式联运路径和速度优化问题,本文首先构建不同碳排放政策下多目标混合整数非线性规划模型,并根据问题特性将其转化为等价的线性模型:其次,为有效求解模型,提出融合问题特性的改进自适应遗传算法,根据问题特,点设计多层编解码机制和自适应遗传进化策略;最后,以我国某公海多式联运系统为例,验证所提模型和算法的有效性,并针对不同时间窗和低硫燃油价格进行敏感性分析。实验结果表明:与传统遗传算法和商业求解器Lig0相比,改进自适应遗传算法能获得更满意的方案,分别减少了5.2%和3.7%的多式联运总成本:强制碳排放政策下,排放限额的变化一般不会改变经营人的路线选择,只会影响经营人是否进行运输活动;碳税政策下,碳税价格上涨对多式联运总成本影响很小;碳交易政策下,不同排放限额的多式联运方案可能一致;货物准备时间延后和截止时间提前会增加运输成本,船舶在排放控制区内外使用不同航速能够带来明显的经济效益。

关键词: 综合运输, 路径和速度优化, 自适应遗传算法, 绿色多式联运, 排放控制区

Abstract: This study solves a new green high-seas multimodal transportation route and speed optimization problem considering emission control areas. This study first formulates a multi-objective mixed integer nonlinear programming model under different carbon emission policies and transforms the nonlinear model into an equivalent mixed-integer linear programming model according to the problem characteristics. To effectively solve the models, an improved adaptive genetic algorithm (IAGA) incorporating the characteristics of the problem is proposed, in which a customized multi-layer coding and decoding mechanism and an adaptive genetic evolution operator are proposed. Finally, a case study from the high-sea multimodal transportation system in China is conducted to demonstrate the viability of the proposed model and algorithm and a sensitivity analysis is also done for various time frames and low-sulfur fuel costs. The numerical experimental results show that: 1) Compared with a traditional genetic algorithm and the commercial solver Lingo, the improved adaptive genetic algorithm results in more satisfactory solutions and reduces total multimodal transportation costs by 5.2% and 3.7% . 2) Under the mandatory carbon emissions policy, changes in emission allowances typically do not affect the choice of the route made by an operator, but only affect whether the operator conducts transportation activities. Under the carbon tax policy, the overall cost of intermodal transportation is not significantly affected by the carbon tax price increase. Under the carbon trading policy, multimodal transport options with different emission allowances may be consistent. And 3) the shipping cost can lead to a direct proportion to the price of low- sulfur fuel, and adopting different ship speeds inside and outside the emission control areas can bring clear economic advantages.

Key words: integrated transportation, route and speed optimization, adaptive genetic algorithm, green intermodal transportation, emission control area

中图分类号: