[1] 郑汉, 张星臣, 王志美. 混合车型需求响应公交服务定制问题研究[J]. 交通运输系统工程与信息, 2018, 18
(2): 157-163. [ZHENG H, ZHANG X C, WANG Z M.
Design of demand-responsive service by mixed-type
vehicles[J]. Journal of Transportation Systems
Engineering and Information Technology, 2018, 18(2):
157-163.]
[2] ZHENG M, ZHOU R, LIU S, et al. Route design model of
multiple feeder bus service based on existing bus lines
[J]. Journal of Advanced Transportation, 2020, 2020(8):
1-12.
[3] POSADA M, HALL C H. A metaheuristic for evaluation
of an integrated special transport service[J]. Urban Sci,
2020, 24(3): 316-338.
[4] 卢小林, 潘述亮, 邹难. 复杂路网下灵活接驳公交路径优化研究[J]. 交通运输系统工程与信息, 2016, 16(6):
128-134. [LU X L, PAN S L, ZOU N. Flexible feeder
transit route design in complex road network[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2016, 16(6): 128-134.]
[5] HUANG D, GU Y, WANG S, et al. A two-phase
optimization model for the demand-responsive
customized bus network design[J]. Transportation
Research Part C: Emerging Technologies, 2020, 111(7):
1-21.
[6] AZADEH S, ATASOY B, BEN-AKIVA M E, et al.
Choice-driven dial-a-ride problem for demand responsive
mobility service[J]. Transportation Research Part B,
2022, 161: 128-149.
[7] 韩磊, 张轮, 郭为安. 混合交通流环境下基于改进强化学习的可变限速控制策略[J]. 交通运输系统工程与信息, 2023, 23(3): 110-122. [HAN L, ZHANG L, GUO W
A. Variable speed limit control based on improved
dueling double deep Q network under mixed traffic
environment[J]. Journal of Transportation Systems
Engineering and Information Technology, 2023, 23(3):
110-122.]
[8] 马东方, 陈曦, 吴晓东, 等. 基于强化学习的干线信号混合协同优化方法[J]. 交通运输系统工程与信息,
2022, 22(2): 145-153. [MA D F, CHEN X, WU X D,
et al. Mixed- coordinated decision-making method for
arterial signals based on reinforcement learning[J].
Journal of Transportation Systems Engineering and
Information Technology, 2022, 22(2): 145-153.]
[9] SON K, KIM D, KANG W J, et al. QTRAN: Learning to
factorize with transformation for cooperative multi-agent
reinforcement learning[C]. Long Beach, CA, USA. ICML,
2019.
[10] 彭理群, 罗明波, 卢赫, 等. 基于Q-learning的定制公交跨区域路径规划研究[J]. 交通运输系统工程与信息,
2020, 20(1): 104-110. [PENG L Q, LUO M B, LU H,
et al. Cross-regional customized bus path planning based
on Q-learning[J]. Journal of Transportation Systems
Engineering and Information Technology, 2020, 20(1):
104-110.]
[11] ZHAO J, MAO M, ZHAO X, et al. A hybrid of deep
reinforcement learning and local search for the vehicle
routing problems[J]. IEEE Transactions on Intelligent
Transportation Systems, 2021, 22(11): 7208-7218.
[12] CAVALLARO F, NOCERA S. Integration of passenger
and freight transport: A concept-centric literature review
[J]. Research in Transportation Business & Management,
2022, 43: 100718.
[13] 潘寒川, 陆俊波, 胡华, 等. 客货混运下的城轨时刻表与流量控制协同优化研究[J]. 交通运输系统工程与信息, 2023, 23(2): 187-196. [PAN H C, LU J B, HU H,
et al. Collaborative optimization of urban rail timetable
and flow control under mixed passenger and freight
transportation[J]. Journal of Transportation Systems
Engineering and Information Technology, 2023, 23(2):
187-196.]
[14] ZHAO L Z, ZHOU J P, LI H Y, et al. Optimizing the
design of an intra-city metro logistics system based on
a hub-and-spoke network model[J]. Tunnelling and
Underground Space Technology, 2021, 116: 104086.
[15] FEDERICO C, SILVIO N. Flexible-route integrated
passenger-freight transport in rural areas[J].
Transportation Research Part A: Policy and Practice,
2023, 169: 103604.
|