交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (5): 103-113.DOI: 10.16097/j.cnki.1009-6744.2025.05.009

• 自动驾驶与智慧交通 • 上一篇    下一篇

数据驱动的高速公路自学习元胞传输模型

林培群1,黄超铄1,周楚昊*2,庞崇浩1,邓锴宇1   

  1. 1. 华南理工大学,土木与交通学院,广州510641;2.广东技术师范大学,汽车与交通工程学院,广州510450
  • 收稿日期:2025-06-24 修回日期:2025-09-02 接受日期:2025-09-04 出版日期:2025-10-25 发布日期:2025-10-25
  • 作者简介:林培群(1980—),男,广东潮州人,教授,博士。
  • 基金资助:
    国家自然科学基金(52072130);广东省自然科学基金(2025A1515010046)。

A Data-driven Cellular Transmission Model for Self-learning on Expressways

LIN Peiqun1, HUANG Chaoshuo1, ZHOU Chuhao*2, PANG Chonghao1, DENG Kaiyu1   

  1. 1. School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China; 2. School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China
  • Received:2025-06-24 Revised:2025-09-02 Accepted:2025-09-04 Online:2025-10-25 Published:2025-10-25
  • Supported by:
    National Natural Science Foundation of China(52072130);Natural Science Foundation of Guangdong Province, China (2025A1515010046)。

摘要: 高效的交通仿真模型能够为交通管理部门提供实时和短期的路段流量变化情况,为主动交通管理与路网优化疏导提供科学依据。然而,在复杂交通场景下,模型参数易受环境影响发生变化,导致仿真精度下降。本文提出一种数据驱动的自学习元胞传输模型(Self-Learning Cell Transmission Model, SL-CTM)。模型采用数据驱动方式,通过对元胞输入特征、内部状态与输出流量的自适应拟合,自主学习元胞传输模型中需要人工标定的参数,有效规避复杂参数标定过程,提升仿真的准确性与运行效率。基于广东省南二环高速公路和佛开高速公路实测数据的验证结果表明:与随机森林模型相比,SL-CTM在两条道路的流量仿真加权平均绝对误差百分比(Weighted Mean Absolute Percentage Error,WMAPE)分别下降17.55%和15.83%;与长短期记忆网络相比,SL-CTM在两条道路的流量仿真WMAPE分别下降12.37%和10.50%;说明SL-CTM在使用更少初始特征的同时具备更强的流量突变响应能力;与SUMO(Simulation of Urban Mobility)仿真软件相比,SL-CTM的WMAPE下降55.90%,仿真速度提升72.57%,在高流量场景中表现出更优的仿真性能。研究表明,SL-CTM能够显著提升交通仿真的精度与计算效率,为复杂交通环境下的动态交通管理提供更为可靠的技术支持。

关键词: 智能交通, 交通流预测, 元胞传输模型, 高速公路, 数据驱动建模

Abstract: An efficient traffic simulation model can offer a scientific basis on proactive traffic management and network optimization for transportation authorities by providing the changes of real-time and short-term traffic flow. However, in complex traffic scenarios, model parameters are susceptible to environmental influences, leading to the decrease in simulation accuracy. This paper proposes a data-driven Self-Learning Cellular Transmission Model (SL-CTM), which employs a data-driven approach, adaptively fitting the input features, internal states, and output flows of cells. It can autonomously learn the parameters that typically require manual calibration in the cellular transmission model, thereby effectively avoiding the complex parameter calibration process and enhancing simulation accuracy and operational efficiency. Validation results based on the empirical data from the South Second Ring Expressway and the Fokai Expressway in Guangdong Province indicate that, compared with the Random Forest model, the SL-CTM reduces the Weighted Mean Absolute Percentage Error (WMAPE) of traffic flow simulation by 17.55% and 15.83% on the two expressways, respectively. Compared with the Long Short-Term Memory (LSTM) model, the SL-CTM achieves reductions of 12.37% and 10.50% in WMAPE, respectively. These findings demonstrate that the SL-CTM is capable of achieving a stronger responsiveness to sudden traffic flow variations while requiring fewer initial features. Compared to the SUMO simulation software, SL-CTM achieves a 55.90% reduction in WMAPE and a 72.57% improvement in simulation speed, which exhibits superior performance in high-traffic scenarios. The study demonstrates that SL-CTM significantly improves the accuracy and computational efficiency of traffic simulation, providing more reliable technical support for dynamic traffic management in complex traffic environments.

Key words: intelligent transportation, traffic flow prediction, cellular transmission model, highway, data-driven modeling

中图分类号: