|
[1]ZHANG Y, XU Q, WANG J, et al. A learning-based
discretionary lane-change decision-making model with
driving style awareness[J]. IEEE Transactions on
Intelligent Transportation Systems, 2022, 24(1): 68-78.
[2]付锐,张海伦,刘文晓,等.驾驶人意图识别综述[J].长安大学学报(自然科学版),2022,42(1): 33-60. [FU R,
ZHANG H L, LIU W X, et al. Review on driver intention
recognition[J]. Journal of Chang'an University(Natural
Science Edition), 2022, 42(1): 33-60.]
[3]王婉琦,程国柱,徐亮.基于无监督聚类分析的激进换道行为识别方法[J].交通运输系统工程与信息,2024,
24(2): 166-178. [WANG W Q, CHENG G Z, XU L.
Identification of aggressive lane-changing behaviour
based on unsupervised cluster analysis[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 166-178.]
[4]卢辉遒,赵枫,谢波,等.冰雪环境下基于神经网络的驾驶人换道意图识别[J]. 吉林大学学报(工学版),
2023, 53(1): 273-284. [LU H Q, ZHAO F, XIE B, et al.
Driver's lane change intention recognition in snow and
ice environment based on neural network[J]. Journal of
Jilin University(Engineering and Technology Edition),
2023, 53(1): 273-284.]
[5]
FENG Z, WEI X, BI Y, et al. An integrated framework for
driving risk evaluation that combines lane-changing
detection and an attention-based prediction model[J].
Traffic Injury Prevention, 2025, 26(2): 198-206.
[6]赵建东,赵志敏,屈云超,等.轨迹数据驱动的车辆换道意图识别研究[J].交通运输系统工程与信息,2022,
22(4): 63-71. [ZHAO J D, ZHAO Z M, QU Y C, et al.
Vehicle lane change intention recognition driven by
trajectory data[J]. Journal of Transportation Systems
Engineering and Information Technology, 2022, 22(4):
63-71.]
[7]
李琳,赵万忠,王春燕.基于Bi-GLSTM网络的车辆驾驶意图分析与识别[J]. 机械工程学报,2024, 60(10):
51-63. [LI L, ZHAO W Z, WANG C Y. Driving intention
recognition model based on Bi-GLSTM network[J].
Journal of Mechanical Engineering, 2024, 60(10): 51
63.]
[8]LIU H, WANG T, LI W, et al. Lane-change intention
recognition considering oncoming traffic: Novel insights
revealed by advances in deep learning[J]. Accident
Analysis & Prevention, 2024, 198: 107476.
[9]
GAO K, LI X, CHEN B, et al. Dual transformer based
prediction for lane change intentions and trajectories in
mixed traffic environment[J]. IEEE Transactions on
Intelligent Transportation Systems, 2023, 24(6): 6203
6216.
[10] 苑仁腾, 王晨竹,项乔君,等.轨迹数据驱动的车辆换道意图识别模型[J].华南理工大学学报(自然科学版),
2024, 52(6): 34-44. [YUAN R T, WANG C Z, XIANG Q
J, et al. Trajectory data-driven model for vehicle lane
change intention recognition[J]. Journal of South China
University of Technology(Natural Science Edition), 2024,
52(6): 34-44.]
[11] 杨达, 刘家威,郑斌,等.基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J].交通运输系统工程与信息,2024, 24(2): 114-126. [YANG D, LIU J W,
ZHENG B, et al. A vehicle lane-changing trajectory
prediction model based on temporal convolutional
networks and attention mechanism[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 114-126.]
[12] LUNDBERG S M, LEE S I. A unified approach to
interpreting model predictions[J]. Advances in Neural
Information Processing Systems, 2017, 30: 1-10.
[13] ZHOU H, ZHANG S, PENG J, et al. Informer: Beyond
efficient transformer for long sequence time-series
forecasting[C]// 35th AAAI Conference on Artificial
Intelligence/33rd Conference on Innovative Applications
of Artificial Intelligence/11th Symposium on Educational
Advances in Artificial Intelligence, Palo Alto: AAAI,
2021: 11106-11115.
[14] LI Y, LIU F, XING L, et al. A deep learning framework to
explore influences of data noises on lane-changing
intention prediction[J]. IEEE Transactions on Intelligent
Transportation Systems, 2024, 25(7): 6514-6526.
|