交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (6): 74-86.DOI: 10.16097/j.cnki.1009-6744.2025.06.007

• 智能交通系统与信息技术 • 上一篇    下一篇

考虑车辆运动状态信息特性的自由换道意图识别模型

辛琪* ,王彦锋,王智龙,王畅,牛世峰   

  1. 长安大学,汽车学院,西安710021
  • 收稿日期:2025-07-24 修回日期:2025-09-23 接受日期:2025-09-29 出版日期:2025-12-25 发布日期:2025-12-24
  • 作者简介:辛琪(1987—),男,陕西咸阳人,副教授。
  • 基金资助:
    陕西省重点研发计划项目(2024CY2-GJHX-87); 长安大学中央高校基本科研业务费专项资金(300102223205)。

A Free Lane Change Intention Recognition Model Considering Vehicle Motion State Information Characteristics

XIN Qi*, WANG Yanfeng, WANG Zhilong, WANG Chang, NIU Shifeng   

  1. School of Automobile, Chang'an University, Xi'an 710021, China
  • Received:2025-07-24 Revised:2025-09-23 Accepted:2025-09-29 Online:2025-12-25 Published:2025-12-24
  • Supported by:
    Key Research and Development Program Project of Shaanxi Province(2024CY2-GJHX-87); Fundamental Research Funds for the Central Universities, CHD(300102223205)。

摘要: 为实现自由换道场景下驾驶人换道意图的准确识别,通过分析换道过程中车辆运动状态的信息变化规律,提出一种考虑车辆运动状态信息特性的自由换道意图识别模型。首先,基于人机共驾实车系统平台采集驾驶人自由换道场景下的车辆运动状态信息,通过车道线检测获取车辆中心点与车道中心线的偏离距离,确定自由换道过程关键时间节点,将所采集数据分成车道保持、向左换道和向右换道3类,构建换道意图数据集;其次,通过SHAP(SHapley Additive exPlanations)全局可解释性方法分析各车辆运动状态信息对换道意图识别的影响权重,并采用独立样本T检验说明各变量的差异性,验证各变量作为换道意图识别模型输入的可行性;再次,针对自由换道过程中车辆运动状态的非平稳性、采样吉布斯现象及车道偏离数据干扰问题,在Informer网络的基础上依次引入可逆实例归一化模块(RevIN)、频率增强信道注意力机制(FECAM)、趋势感知自注意力机制(ETTA)和Unet结构,构建自由换道意图识别模型RF-EUInformer(RevINFECAM-ETTA Unet Informer);最后,采用蒙特卡洛交叉验证评估模型的泛化能力,通过消融试验得出引入的各模块在1.5s预判时间下对准确率的贡献分别为1.4%、0.5%、0.6%和1.2%,验证了各模块的有效性。与双向长短期记忆网络(Bi-LSTM)、卷积长短期记忆网络(ConvLSTM)、时域卷积网络(TCN)和时域卷积网络注意力机制(TCN-Attention)等模型进行对比分析,所提出模型在0.5、1.0、1.5s预判时间下的准确率较最优对比模型分别提升了3.9%、4.5%和5.8%。

关键词: 智能交通, 自由换道意图识别, Informer, 车辆运动状态信息, SHAP方法

Abstract: To accurately identify the driver's lane changing intention in the scene of free lane changing, this paper proposes a free lane changing intention recognition model considering the characteristics of vehicle's motion state information by analyzing the change law of vehicle's motion state information in lane changing. First, the vehicle movement status information under free lane changing was collected based on the human-machine co-driving real vehicle system platform. The distance between the vehicle center and the lane center was obtained through lane detection to determine the key time nodes of the free lane changing process. The collected data were divided into three categories: lane keeping, left lane changing and right lane changing, and the lane changing intention dataset was constructed. Then, the influence weight of vehicle motion state information on lane change intention recognition is analyzed using the SHAP (SHapley Additive exPlanations) global interpretability method, and the difference of each variable is illustrated by the independent sample T test, which verifies the feasibility of each variable as the input of lane change intention recognition model. To address challenges in recognizing free lane-changing intentions: such as unstable vehicle movement, the Gibbs phenomenon in data sampling, and interference from lane departure data, a new model was built based on the Informer network, incorporating several key techniques: RevIN (Reversible Instance Normalization), FECAM (Frequency Enhanced Channel Attention Mechanism), ETTA (Efficient Temporal Trend-Aware Attention mechanism), and U-Net structure. This model is named RF-EUInformer (RevIN FECAM-ETTA Unet Informer). The Monte Carlo Cross Validation was used to evaluate the generalization ability of the model. The ablation test showed that the contribution of each module to the accuracy was respectively 1.4%, 0.5%, 0.6% and 1.2% in 1.5 s prediction time, which verified the effectiveness of each module. Compared with Bi-LSTM (Bidirectional Long Short Term Memory), ConvLSTM (Convolutional Long Short-Term Memory), TCN (Temporal Convolutional Network) and TCN-Attention models, the accuracy of the proposed model in 0.5 s, 1.0 s and 1.5 s prediction time is improved by 3.9%, 4.5% and 5.8%, respectively.

Key words: intelligent transportation, free lane change intention recognition, Informer, vehicle movement status information, SHAP method

中图分类号: