[1] HE Z B. Portraying ride-hailing mobility using multi-day
trip order data: A case study of Beijing, China[J].
Transportation Research Part A: Policy and Practice,
2021, 146: 152-169.
[2] 邵海雁, 靳诚, 钟业喜, 等. 海口城市建成环境对高峰期网约车通勤出行的影响: 基于滴滴出行数据
[J]. 人文地理, 2022, 37(5): 130-139. [SHAO H Y, JIN
C, ZHONG Y X, et al. The impact of Haikou's urban
built environment on online car-hailing commuting
during peak hours: Based on DiDi travel data[J]. Human
Geography, 2022, 37(5): 130-139.]
[3] 杨励雅, 王振波. 城市社区建成环境对居民日常出行行为的影响分析[J]. 经济地理, 2019, 39(4): 101-108.
[YANG L Y, WANG Z B. Impact of residential built
environment on daily travel behavior[J]. Economic
Geography, 2019, 39(4): 101-108.]
[4] YIN C, CAO J S, SUN B D, et al. Exploring built
environment correlates of walking for different purposes:
Evidence for substitution[J]. Journal of Transport
Geography, 2023, 106: 103505.
[5] 尹超英, 邵春福, 王晓全, 等. 考虑空间异质性的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学
版), 2020, 50(2): 543-548. [YIN C Y, SHAO C F,
WANG X Q, et al. Influence of built environment on
commuting mode choice considering spatial heterogeneity
[J]. Journal of Jilin University (Engineering and
Technology Edition), 2020, 50(2): 543-548.]
[6] SUN B D, ERMAGUN A, DAN B. Built environmental
impacts on commuting mode choice and distance:
Evidence from Shanghai[J]. Transportation Research Part
D: Transportation and Environment, 2016, 52: 441-453.
[7] 吴静娴, 钱依楠, 韩印. 考虑群体异质性的建成环境与老年人慢行出行关系研究[J]. 交通运输系统工程与信息, 2022, 22(4): 194-201. [WU J X, QIAN Y N, HAN Y.
Relationship between built environment and elderly
active travel of based on group heterogeneity[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2022, 22(4): 194-201.]
[8] ZHOU M, WANG D G, GUAN X D. Co-evolution of the
built environment and travel behaviour in Shenzhen,
China[J]. Transportation Research Part D: Transportation
and Environment, 2022, 107: 103291.
[9] SABOURI S, PARK K, SMITH A, et al. Exploring the
influence of built environment on Uber demand[J].
Transportation Research Part D: Transportation and
Environment, 2020, 81(C): 102296.
[10] ZHANG B, CHEN S Y, MA Y F, et al. Analysis on
spatiotemporal urban mobility based on online carhailing data[J]. Journal of Transport Geography, 2020, 82
(C): 102568.
[11] GHAFFAR A, MITRA S, HYLAND M. Modeling
determinants of ridesourcing usage: A census tract-level
analysis of Chicago[J]. Transportation Research Part C:
Emerging Technologies, 2020, 119: 102769.
[12] DEAN M D, KOCKELMAN K M. Spatial variation in
shared ride-hail trip demand and factors contributing to
sharing: Lessons from Chicago[J]. Journal of Transport
Geography, 2021, 91: 102944.
[13] YU H T, PENG Z R. The impacts of built environment on
ridesourcing demand: A neighbourhood level analysis in
Austin, Texas[J]. Urban Studies, 2020, 57(1): 152-175.
[14] WANG S, NOLAND R B. Variation in ride-hailing trips
in Chengdu, China[J]. Transportation Research Part D:
Transportation and Environment, 2021, 90: 102596.
[15] YU H T, PENG Z R. Exploring the spatial variation of
ridesourcing demand and its relationship to built
environment and socioeconomic factors with the
geographically weighted poisson regression[J]. Journal of
Transport Geography, 2019, 75: 147-163.
[16] 甘佐贤, 梁晶. 基于半参数GWR的轨道站点客流影响因素分析[J]. 现代城市研究, 2022(4): 110-115. [GAN
Z X, LIANG J. Urban rail transit ridership analysis based
on semiparametric geographically weighted regression
model[J]. Modern Urban Research, 2022(4): 110-115.]
[17] 程小云, 张学宇, 施澄, 等. 基于多源数据的夜间出行需求空间效应及其异质性分析[J]. 中国公路学报,
2021, 34(12): 288-301. [CHEN X Y, ZHANG X Y, SHI
C, et al. Analysis of spatial effect and its heterogeneity
on night-time travel based on multi-source data[J]. China
Journal of Highway and Transport, 2021, 34(12): 288-
301.]
[18] 安东, 蔺海娣, 陈思美. 基于MGWR模型的轨道站点客流时空影响因素研究: 以西安地铁1-6号线为例[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(1): 20-
26. [AN D, LIN H D, CHEN S M . Research on temporal
and spatial influencing factors of passenger flow at rail
stations based on MGWR model: Taking Xi'an metro line
1-6 as an example[J]. Journal of Xi'an University of
Architecture and Technology, 2023, 55(1): 20-26.]
[19] NAKAYA T, CHARLTON M, BRUNSDON C, et al.
GWR4.09 user manual: Windows application for
geographically weighted regression modelling[EB/OL].
(2016-3-24) [2023-3-26]. https: //gwrtools. github. io/
author/taylor-oshan.html.
[20] LIU F, GAO F, YANG L C, et al. Exploring the spatially
heterogeneous effect of the built environment on ridehailing travel demand: A geographically weighted
quantile regression model[J]. Travel Behaviour and
Society, 2022, 29: 22-33.
[21] 龙雪琴, 赵欢, 周萌, 等. 成都市建成环境对网约车载客点影响的时空分异性研究[J]. 地理科学, 2022,
42(12): 2076-2084. [LONG X Q, ZHAO H, ZHOU M,
et al. Spatiotemporal heterogeneity of the impact of
built environment in Chengdu on online car-hailing
passengers' pick-up points[J]. Scientia Geographica
Sinica, 2022, 42(12): 2076-2084.]
|