[1] 中国城市轨道交通协会. 城市轨道交通2022年度统计和分析报告[R/OL]. (2023-03-31). [2023-07-20]. https:
//www.camet.org.cn/tjxx/11944. [China Urban Rail
Transit Association. Urban rail transit 2022 annual
statistics and analysis report[R/OL]. (2023-03-31)
[2023-07-20]. https://www.camet.org.cn/tjxx/11944.]
[2] 尹芹, 孟斌, 张丽英. 基于客流特征的北京地铁站点类型识别[J]. 地理科学进展, 2016, 35(1): 126-134. [YIN
Q, MENG B, ZHANG L Y. Identification of Beijing
subway station location based on passenger flow
characteristics[J]. Progress in Geography, 2016, 35(1):
126-134.]
[3] 李子浩, 田向亮, 黎忠文, 等. 基于客流规律的地铁车站客流风险分析[J]. 清华大学学报(自然科学版),
2019, 59(10): 854-860. [LI Z H, TIAN X L, LI Z W,
et al. Risk analysis of passenger flow in metro stations
based on passenger flow law[J]. Journal of Tsinghua
University (Natural Science Edition), 2019, 59(10): 854-
860.]
[4] ZHANG L, PEI T, MENG B, et al. Two-phase
multivariate time series clustering to classify urban rail
transit stations[J]. IEEE Access, 2020, 8: 167998-
168007.
[5] 高勃, 秦勇, 肖雪梅, 等. 基于K-means的北京地铁路网重要度聚类分析[J]. 交通运输系统工程与信息, 2014,
14(3): 207-213. [GAO B, QIN Y, XIAO X M, et al.
Clustering analysis of importance of Beijing metro
railway network based on K-means[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2014, 14(3): 207-213.]
[6] XU D, ZHANG X, ZHANG X, et al. Type identification
of land use in metro station area based on spatial-temporal features extraction of human activities[J].
Sustainability, 2022, 14(20): 13122.
[7] ZHOU Y, ZHENG S, HU Z, et al. Metro station risk
classification based on smart card data: A case study in
Beijing[J]. Physica A: Statistical Mechanics and its
Applications, 2022, 594(3): 127019.
[8] 蒋阳升, 俞高赏, 胡路, 等. 基于聚类站点客流公共特征的轨道交通车站精细分类[J]. 交通运输系统工程与信息, 2022, 22(4): 106-112. [JIANG Y S, YU G S, HU
L, et al. Fine classification of rail transit stations based
on the public characteristics of passenger flow at
clustered stations[J]. Journal of Transportation Systems
Engineering and Information, 2022, 22(4): 106-112.]
[9] LI W, ZHOU M, DONG H. Classifications of stations in
urban rail transit based on the two-step cluster[J].
Intelligent Automation and Soft Computing, 2020, 26(3):
531-538.
[10] 李清嘉, 彭建东, 杨红. 武汉市不同站域建成环境与轨道交通站点客流特征关系分析[J]. 地球信息科学学报, 2021, 23(7): 1246-1258. [LI Q J, PENG J D, YANG
H. Research on relationship analysis between passenger
flow characteristics of rail transit stations and built
environment of different station areas in Wuhan[J].
Journal of Geo-information Science, 2021, 23(7): 1246-
1258.]
[11] ZHANG Y, LI Y, ZHANG G. Short-term wind power
forecasting approach based on Seq2Seq model using
NWP data[J]. Energy, 2020, 213: 118371.
[12] SHAHZADEH A, KHOSRAVI A, NAHAVANDI S.
Improving load forecast accuracy by clustering
consumers using smart meter data[C]. Killarney: 2015
International Joint Conference on Neural Networks
(IJCNN), IEEE, 2015.
[13] ZHANG J, CHEN F, SHEN Q. Cluster-based LSTM
network for short-term passenger flow forecasting in
urban rail transit[J]. IEEE Access, 2019, 7: 147653-
147671.
[14] 周雨霏, 杨家文, 周江评, 等. 基于热力图数据的轨道交通站点服务区活力测度研究: 以深圳市地铁为例
[J]. 北京大学学报(自然科学版), 2020, 56(5): 875-883.
[ZHOU Y F, YANG J W, ZHOU J P, et al. Study on
vitality measurement of service area of rail transit station
based on heat map data: A case study of Shenzhen metro
[J]. Journal of Peking University (Natural Science
Edition), 2020, 56(5): 875-883.]
[15] ARTHUR D, VASSILVITSKII S. K-means++ the
advantages of careful seeding[C]. New Orleans
Louisiana: Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms, 2007: 1027-
1035.
[16] BAI S, KOLTER J Z, KOLTUN V. An empirical
evaluation of generic convolutional and recurrent
networks for sequence modeling[J]. ArXiv Preprint,
2018, DOI: arXiv: 1803.01271.
|