[1] WANG X, ZHU M, CHEN M, et al. Drivers' rear end
collision avoidance behaviors under different levels of
situational urgency[J]. Transportation Research Part C:
Emerging Technologies, 2016, 71: 419-433.
[2] DEB R, LIEW W C. Missing value imputation for the
analysis of incomplete traffic accident data[J].
Information Sciences, 2016, 339: 274-289.
[3] LI Z, YU H, ZANG G, et al. A bayesian vector
autoregression-based data analytics approach to enable
irregularly-spaced mixed-frequency traffic collision data
imputation with missing values[J]. Transportation
Research Part C: Emerging Technologies, 2019, 108:
302-319.
[4] LUKUSA M T, PHOA F K H. A horvitz-type estimation
on incomplete traffic accident data analyzed via a zero-inflated Poisson model[J]. Accident Analysis &
Prevention, 2020, 134: 105235.
[5] 柏伟. 交通事故数据缺失机理和插补策略研究[D]. 成都: 西南交通大学, 2019. [BAI W. Research on the
mechanism of missing traffic accident data and
interpolation strategy[D]. Chengdu: Southwest Jiaotong
University, 2019.]
[6] GOODFELLOW I, MIRZA M, XU B, et al. Generative
adversarial nets[C]. Montreal: Proceedings of the 27th
International Conference on Neural Information
Processing Systems, 2014.
[7] LI Z, ZHENG H, FENG X. 3D convolutional generative
adversarial networks for missing traffic data completion
[C]. Hangzhou: Proceedings of the 10th International
Conference on Wireless Communications and Signal
Processing (WCSP), 2018.
[8] 王力, 李敏, 闫佳庆, 等. 基于生成式对抗网络的路网
交通流数据补全方法[J]. 交通运输系统工程与信息,
2018, 18(6): 67-75. [WANG L, LI M, YAN J Q, et al.
Traffic flow data completion method of road network
based on generative adversarial network[J]. Journal of
Transportation Systems Engineering and Information,
2018, 18(6): 67-75.]
[9] 张润生. 基于生成对抗网络的交通数据插补方法研究
[D]. 北 京: 北 京 交 通 大 学, 2022. [ZHANG R S.
Research on traffic data imputation method based on
generative adversarial network[D]. Beijing: Beijing
Jiaotong University, 2022.]
[10] YOON J, JORDON J, SCHAAR M V D. Gain: Missing
data imputation using generative adversarial nets[C].
Stockholm: Proceedings of the 35th International
Conference on Machine Learning, 2018.
[11] BERTSIMAS D, PAWLOWSKI C, ZHOU Y D. From
predictive methods to missing data imputation: An
optimization approach[J]. Journal of Machine Learning
Research, 2018, 18: 1-39.
[12] KE G, MENG Q, FINLEY T, et al. LightGBM: A highly
efficient gradient boosting decision tree[C]. Long Beach:
Proceedings of the 31st Annual Conference on Neural
Information Processing Systems, 2017.
|