[1] 朱子轩, 鲁工圆, 何必胜, 等. 单线铁路网络列车运行智能调度仿真研究 [J]. 计算机仿真, 2019, 36(5): 194-
201. [ZHU Z X, LU G Y, HE B S, et al. Simulation
research on intelligent dispatching of train operation on
single-track railway network[J]. Computer Simulation,
2019, 36(5): 194-201.]
[2] 杨锐, 牟瑞芳, 闫海峰. 列车运行计划仿真模型研究
[J]. 中国铁道科学, 2017, 38(6): 125-133. [YANG R,
MU R F, YAN H F. Research on simulation model of
train operation plan[J]. China Railway Science, 2017, 38
(6): 125-133.]
[3] QUAGLIETTA E, CORMAN F, GOVERDE R M. Impact
of a stochastic and dynamic setting on the stability of
railway dispatching solutions[C]. The Hague,
Netherlands: 16th International IEEE Conference on
Intelligent Transportation Systems, 2013.
[4] VEELENTURF L P, KIDD M P, CACCHIANI V, et al. A
railway timetable rescheduling approach for handling
large-scale disruptions[J]. Transportation Science, 2016,
50(3): 841-862.
[5] 邓念, 彭其渊, 占曙光. 干扰条件下高速铁路列车运行实时调整问题研究 [J]. 交通运输系统工程与信息,
2017, 17(4): 118-123. [DENG N, PENG Q Y, ZHAN S
G. Research on real-time adjustment of high-speed
railway train operation under interference conditions [J].
Journal of Transportation Systems Engineering and
Information Technology, 2017, 17(4): 118-123.]
[6] 徐培娟, 张大伟, 彭辉, 等. 多类干扰下的高铁列车运行调整优化模型 [J]. 铁道科学与工程学报, 2021, 18
(7): 1723-1731. [XU P J, ZHANG D W, PENG H, et al.
Optimization model for high-speed train operation
adjustment under multiple types of interference [J].
Journal of Railway Science and Engineering, 2021, 18
(7): 1723-1731.]
[7] 李智, 张琦, 孙延浩, 等. 高速铁路列车运行图鲁棒性协同优化模型研究 [J]. 交通运输系统工程与信息,
2019, 19(5): 169-176. [LI Z, ZHANG Q, SUN Y H, et al.
Research on robust collaborative optimization model for
high speed railway train diagram[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2019, 19(5): 169-176.]
[8] 牛宏侠, 宁正, 张肇鑫. 高铁列车运行图车站与区间冗余时间同步优化模型[J]. 交通运输系统工程与信息,
2019, 19(3): 96-102. [NIU H X, NING Z, ZHANG Z X.
Synchronous optimization model of station redundant
time and interval redundant time in high-speed railway
train working diagram [J]. Journal of Transportation
Systems Engineering and Information Technology, 2019,
19(3): 96-102.]
[9] ŠEMROV D, MARSETIČ R, ŽURA M, et al.
Reinforcement learning approach for train rescheduling
on a single-track railway[J]. Transportation Research
Part B: Methodological, 2016, 86: 250-267.
[10] LIAO J, YANG G, ZHANG S, et al. A deep reinforcement
learning approach for the energy-aimed train timetable
rescheduling problem under disturbances[J]. IEEE
Transactions on Transportation Electrification, 2021, 7
(4): 3096-3109.
[11] 代学武, 程丽娟, 崔东亮, 等. 基于强化学习的高速列车群运行调整方法[J]. 中国科学: 信息科学, 2022, 52
(5): 890-906. [DAI X W, CHENG L J, CUI D L, et al.
High speed train group operation adjustment method
based on reinforcement learning[J]. Chinese Science:
Information Science, 2022, 52(5): 890-906.]
[12] 王荣笙, 张琦, 张涛, 等. 基于蒙特卡罗树搜索-强化学习的列车运行智能调整方法 [J]. 中国铁道科学, 2022,43(5): 146-156. [WANG R S, ZHANG Q, ZHANG T,
et al. Intelligent adjustment method of train operation
based on Monte Carlo tree search reinforcement learning
[J]. China Railway Science, 2022, 43(5): 146-156.]
[13] 韩忻辰, 俞胜平, 袁志明, 等. 基于Q-learning的高速铁路列车动态调度方法[J]. 控制理论与应用, 2021, 38
(10): 1511-1521. [HAN X C, YU S P, YUAN Z M, et al.
A Q-learning based dynamic scheduling method for high-speed railway trains[J]. Control Theory and Applications,
2021, 38(10): 1511-1521.]
[14] 俞胜平, 韩忻辰, 袁志明, 等. 基于策略梯度强化学习的高铁列车动态调度方法 [J]. 控制与决策, 2022, 37
(9): 2407-2417. [YU S P, HAN X C, YUAN Z M, et al.
High speed train dynamic scheduling method based on
strategic gradient reinforcement learning[J]. Control and
Decision Making, 2022, 37(9): 2407-2417.]
[15] SCHULMAN J, WOLSKI F, DHARIWAL P, et al.
Proximal policy optimization algorithms[J]. Arxiv
Preprint ArXiv, 2017: 170706347.
|