交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (1): 212-220.DOI: 10.16097/j.cnki.1009-6744.2025.01.020

• 系统工程理论与方法 • 上一篇    下一篇

基于车辆轨迹信息的高速公路路网拓扑结构动态生成方法研究

赖树坤1,2,许宏科*1,林杉1,罗永煜2,邹复民3,廖律超3   

  1. 1. 长安大学,电子与控制工程学院,西安710064;2.福建省高速公路信息科技有限公司,福州350011;3. 福建理工大学,福建省汽车电子与电驱动技术重点实验室,福州350118
  • 收稿日期:2024-09-23 修回日期:2024-11-03 接受日期:2025-01-06 出版日期:2025-02-25 发布日期:2025-02-24
  • 作者简介:赖树坤(1984—),男,福建龙岩人,高级工程师,博士生。
  • 基金资助:
    国家自然科学基金(62376059)。

Expressway Network Topology Structure Dynamic Generation Method Based on Vehicle Trajectory Information

LAI Shukun1,2, XU Hongke*1, LIN Shan1, LUO Yongyu2, ZOU Fumin3, LIAO Lvchao3   

  1. 1. School of Electronics and Control Engineering, Chang'an University, Xi'an 710064, China; 2. Fujian Provincial Expressway Information Technology Co Ltd, Fuzhou 350011, China; 3. Fujian Key Laboratory forAutomotive Electronics and Electric Drive, Fujian University of Technology, Fuzhou 350118, China
  • Received:2024-09-23 Revised:2024-11-03 Accepted:2025-01-06 Online:2025-02-25 Published:2025-02-24
  • Supported by:
    National Natural Science Foundation of China(62376059)。

摘要: 针对高速公路路网拓扑结构变化捕获不及时的问题,本文提出一种基于车辆轨迹信息的高速公路路网拓扑结构动态生成方法。首先,通过挖掘ETC海量通行数据,并结合路网拓扑结构有效性约束进行异常拓扑模式分析;其次,针对异常拓扑模式特点建立拓扑优化规则;然后,在优化拓扑集合基础上,采用LightGBM模型实现高速公路路网拓扑结构动态生成;最后,以福建省省域高速公路实际车辆轨迹数据为例,通过少量地市路网数据的训练学习,实现全省域高速路网拓扑结构的准确生成,验证了本文提出模型的有效性。研究结果表明,本文模型的路网拓扑结构生成准确率达98.3%,并可拓展至收费站、ETC门架、服务区等具备车辆轨迹信息采集能力的高速公路节点,为基于路网拓扑结构分析的高速公路精细化管理和个性化出行服务提供有力支撑。

关键词: 智能交通, 路网拓扑, 车辆轨迹, 高速公路, 动态生成方法

Abstract: To address the problem of untimely capture of expressway network topology changes, this paper proposes a method for dynamically generating expressway network topology based on vehicle trajectory information. This paper first analyzes the abnormal topology patterns by mining the massive Electronic Toll Collection (ETC) data and combing the expressway network topology structure validity constraints. Then, the topology optimization rules are defined according to the characteristics of abnormal topology patterns. Based on the optimized topology set, the LightGBM model is used to realize the dynamic generation of expressway network topology structure. Taking the actual vehicle trajectory data of Fujian provincial expressways as an example, the study verifies the effectiveness and feasibility of the propose model and demonstrates the accurate generation of the provincial expressway network topology structure can be achieved through training and learning of local regional expressway network data. The results show that the expressway network topology structure generation accuracy of the model reaches 98.3%, and it can be extended to expressway nodes such as toll stations, ETC gantries, and service areas that have the ability to collect vehicle trajectory information, providing strong support for the refined management of expressways and personalized travel services based on the road network topology analysis.

Key words: intelligent transportation, network topology, vehicle trajectory, expressway, dynamic generation method

中图分类号: