交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (6): 294-304.DOI: 10.16097/j.cnki.1009-6744.2025.06.027

• 系统工程理论与方法 • 上一篇    下一篇

卡车-冲锋舟协同的山区洪灾应急物资配送多目标优化

程佳豪a ,郝志丹a ,李国旗a,b,c ,刘思婧*a,b,c   

  1. 西南交通大学,a.交通运输与物流学院;b.综合交通运输智能化国家地方联合工程实验室; c. 综合交通大数据应用技术国家工程实验室,成都611756
  • 收稿日期:2025-08-04 修回日期:2025-09-09 接受日期:2025-09-12 出版日期:2025-12-25 发布日期:2025-12-24
  • 作者简介:程佳豪(1999—),男,四川成都人,博士生。
  • 基金资助:
    国家自然科学基金(42271195);四川省自然科学基金(2024NSFSC0272)。

Multi-objective Optimization of Truck-Speedboat Coordination for Emergency Material Distribution in Mountainous Floods

CHENG Jiahaoa, HAO Zhidana, LI Guoqia,b,c, LIU Sijing*a,b,c   

  1. a. School of Transportation and Logistics; b. National United Engineering Laboratory of Integrated and Intelligent Transportation; c. National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2025-08-04 Revised:2025-09-09 Accepted:2025-09-12 Online:2025-12-25 Published:2025-12-24
  • Supported by:
    National Natural Science Foundation of China (42271195);Natural Science Foundation of Sichuan Province, China (2024NSFSC0272)。

摘要: 山区洪涝灾害易导致道路淹没中断,形成陆路与水路并存的复杂路网,加大了应急物资配送难度。据此,本文建立由物资仓库、陆路和水路组成的陆-水联运配送网络,考虑物资仓库的存储限制和灾后路网功能分化,采用仓库间横向转运及卡车-冲锋舟协同配送策略,构建以最小化总调运时间和最大化平均需求满足率为目标的双目标混合整数规划模型,并设计包含两阶段启发式初始解构造、混合遗传算子和可变邻域搜索等策略的改进非支配排序遗传算法II(INSGA-II)进行求解。以某山区在建大型工程为案例进行数值实验,结果表明:与依赖式协同相比,允许冲锋舟从仓库出发的混合式协同配送可将最大平均需求满足率提升4.85%,并将最短总调运时间缩短2.17%。

关键词: 物流工程, 车辆路径问题, 非支配排序遗传算法, 应急物资配送, 卡车-冲锋舟协同

Abstract: Floods in mountainous areas often disrupt roads, create complex networks of land and water routes and challenge emergency material distribution. This paper develops a bi-objective mixed-integer programming model considering warehouse storage limits and post-disaster network functional differentiation. A land-water intermodal distribution network is established with warehouses, land, and water routes. The proposed model uses the lateral transshipment and the truck-speedboat collaborative strategy to minimize total transportation time and maximize the average demand satisfaction rate. An improved Non-dominated Sorting Genetic Algorithm II (INSGA-II) is designed to solve the model, which includes a two-phase heuristic, hybrid genetic operators, and variable neighborhood search. A case study of a large-scale construction project shows that a hybrid collaborative strategy, allowing speedboats to depart from warehouses, improves the maximum average satisfaction rate by 4.85% and reduces the shortest transportation time by 2.17% compared to a dependent collaborative mode.

Key words: logistics engineering, vehicle routing problem, Non-dominated Sorting Genetic Algorithm II (NSGA-II), emergency material delivery, truck-speedboat coordination

中图分类号: