Journal of Transportation Systems Engineering and Information Technology ›› 2021, Vol. 21 ›› Issue (4): 6-22.DOI: 10.16097/j.cnki.1009-6744.2021.04.002
Previous Articles Next Articles
GE Ying-en*a, WEN Xinb
Received:
2021-06-06
Revised:
2021-07-20
Accepted:
2021-07-23
Online:
2021-08-25
Published:
2021-08-23
Supported by:
葛颖恩*a,温馨b
作者简介:
葛颖恩(1971- ),男,安徽太和人,教授,博士。
基金资助:
CLC Number:
GE Ying-en, WEN Xin. A Review of Environmentally Sustainable Container Liner Shipping Management[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 6-22.
葛颖恩, 温馨. 环境可持续集装箱班轮运输管理研究综述[J]. 交通运输系统工程与信息, 2021, 21(4): 6-22.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.tseit.org.cn/EN/10.16097/j.cnki.1009-6744.2021.04.002
[1] CHENG T C E, FARAHANI R Z, LAI K H, et al. Sustainability in maritime supply chains: Changes and opportunities for theory and practice[J]. Transportation Research Part E, 2015, 78: 1- 2, DOI: 10.1016/j.tre. 2015.03.007. [2] International Maritime Organization. Third IMO Greenhouse gas study 2014[R]. London: IMO, 2015. [3] ADAMOPOULOS A. IMO agrees to cut emissions by at least 50% by 2050 [N/OL]. Lloyd's List, (2018- 04- 13) [2019-03-04]. [4] LEE T, CHANG Y, LEE P. Economy-wide impact analysis of a carbon tax on international container shipping[J]. Transportation Research Part A, 2013, 58: 87-102, DOI: 10.1016/j.tra. 2013.10.002. [5] WANG K, FU X, LUO M. Modeling the impacts of alternative emission trading schemes on international shipping[J]. Transportation Research Part A, 2015, 77: 35-49, DOI: 10.1016/j.tra. 2015.04.006. [6] DAI W L, FU X, YIP T L, et al. Emission charge and liner shipping network configuration: An economic investigation of the Asia-Europe route[J]. Transportation Research Part A, 2018, 110: 291-305, DOI: 10.1016/j. tra. 2017.12.005. [7] ZHUGE D, WANG S, ZHEN L, et al. Subsidy design in a vessel speed reduction incentive program under government policies[J]. Naval Res Logistics, 2020: 1-15, DOI: 10.1002/nav. 21948. [8] HAN B, PAN X, ZHOU Y. Government subsidies and revenue sharing decisions for port and shipping service supply chain in emission control areas[J]. Journal of Advanced Transportation, 2020, DOI: 10.1155/2020/ 8892781. [9] SHI Y. Reducing greenhouse gas emissions from international shipping: Is it time to consider marketbased measures?[J]. Marine Policy, 2016, 64: 123-134, DOI: 10.1016/j.marpol.2015. 11.013. [10] RAHIM M M, ISLAM M T, KURUPPU S. Regulating global shipping corporations' accountability for reducing greenhouse gas emissions in the seas[J]. Marine Policy, 2016, 69: 159-170, DOI: 10.1016/j.marpol. 2016.04.018. [11] XING H, SPENCE S, CHEN H. A comprehensive review on countermeasures for CO2 emissions from ships[J]. Renewable and Sustainable Energy Reviews, 2020(134), DOI: 10.1016/j.rser.2020.110222. [12] SVANBERG M, ELLIS J, LUNDGREN J, et al. Renewable methanol as a fuel for the shipping industry [J]. Renewable and Sustainable Energy Reviews, 2018 (94): 1217-1228. [13] ABADIE L M, GOICOECHEA N. Powering newly constructed vessels to comply with ECA regulations under fuel market prices uncertainty: Diesel or dual fuel engine?[J]. Transportation Research Part D, 2019, 67: 433-448, DOI: 10.1016/j.trd.2018.12.012. [14] SCHINAS O, METZGER D. A pay-as-you-save model for the promotion of greening technologies in shipping greening technologies[J]. Transportation Research Part D, 2019, 69: 184-195, DOI: 10.1016/j.trd. 2019.01.018. [15] FAN L X, GU B M, LUO M F. A cost-benefit analysis of fuel-switching VS. hybrid scrubber installation: A container route through the Chinese SECA case[J]. Transport Policy, 2020, 99: 336- 344, DOI: 10.1016/j. tranpol.2020.09.008. [16] BOUMAN E A, LINDSTAD E, RIALLAND A I, et al. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping: A review[J]. Transportation Research Part D, 2017, 52: 408- 421, DOI:10.1016/j.trd.2017.03.022. [17] WAN Z, ABDEL E M, CHEN Y, TANG J. Decarbonizing the international shipping industry: Solutions and policy recommendations[J]. Marine Pollution Bulletin, 2018, 126(2018): 428- 435, DOI: 10.1016/j.marpolbul.2017.11.064. [18] BALCOMBE P, BRIERLEY J, LEWIS C, et al. How to decarbonise international shipping: Options for fuels, technologies and policies[J]. Energy Conversion and Management, 2019, 182: 72- 88, DOI: 10.1016/j. enconman.2018.12.080. [19] YANG C S. An analysis of institutional pressures, green supply chain management, and green performance in the container shipping context[J]. Transportation Research Part D, 2018, 61: 246- 260, DOI:10.1016/j. trd.2017.07.005. [20] YUEN K F, WANG X, WONG Y D, et al. Antecedents and outcomes of sustainable shipping practices: The integration of stakeholder and behavioural theories[J]. Transportation Research Part E, 2017, 108: 18-35, DOI: 10.1016/j.tre.2017.10.002. [21] MALLIDIS I, DESPOUDI S, DEKKER R, et al. The impact of sulphur limit fuel regulations on maritime supply chain network design[J]. Annals of Operations Research, 2018, 294: 677- 695, DOI: 10.1007/s10479- 018-2999-4. [22] SHENG D, LI Z C, FU X, et al. Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition[J]. Transportation Research Part E, 2017, 101: 99-114, DOI: 10.10 16/j.tre.2017.03.004. [23] PSARAFTIS H N, KONTOVAS C A. Speed models for energy-efficient maritime transportation: A taxonomy and survey[J]. Transportation Research Part C, 2013, 26: 331-351. DOI: 10.1016/j.trc.2012.09.012. [24] WANG S, MENG Q. Sailing speed optimization for container ships in a liner shipping network[J]. Transportation Research Part E, 2012, 48 (3): 701-714, DOI: 10.1016/j.tre.2011.12.003. [25] KARSTEN C V, ROPKE S, PISINGER D. Simultaneous optimization of container ship sailing speed and container routing with transit time restrictions[J]. Transportation Science, 2018, 52(4): 769-787, DOI: 10.1287/trsc.2018.0818. [26] ZHEN L, WANG S, LAPORTE G, et al. Integrated planning of ship deployment, service schedule and container routing[J]. Computers and Operations Research, 2019, 104: 304- 318, DOI: 10.1016/j. cor.2018.12.022. [27] WANG S, QU X, YANG Y. Estimation of the perceived value of transit time for containerized cargoes[J]. Transportation Research Part A, 2015, 78: 298-308, DOI: 10.1016/j.tra.2015.04.014. [28] WANG S, WANG X. A polynomial-time algorithm for sailing speed optimization with containership resource sharing[J]. Transportation Research Part B, 2016, 93: 394-405, DOI: 10.1016/j.trb.2016.08.003. [29] 吴暖, 王诺, 黄祺. 基于改进NSGA-Ⅱ算法的班轮航线 配船多目标优化[J]. 工业工程与管理, 2018, 23(1): 79- 85. [WU N, WANG N, HUANG Q. Multi- objective optimization of liner fleet deployment by means of improved NSGA- II algorithm[J]. Industrial Engineering and Management, 2018, 23(1): 79-85] [30] YAO Z, NG S H, LEE L H. A study on bunker fuel management for the shipping liner services[J]. Computers & Operations Research, 2012, 39(5): 1160- 1172, DOI: 10.1016/j.cor.2011.07.012. [31] KONTOVAS C A. The green ship routing and scheduling problem (GSRSP): A conceptual approach[J]. Transportation Research Part D, 2014, 31: 61-69, DOI: 10.1016/j.trd.2014.05.014. [32] CORBETT J J, WANG H, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D, 2009, 14(8): 593- 598, DOI: 10.1016/j.trd. 2009.08.005. [33] CARIOU P, CHEAITOU A. The effectiveness of a European speed limit versus an international bunkerlevy to reduce CO2 emissions from container shipping[J]. Transportation Research Part D, 2012, 17: 116- 123, DOI: 10.1016/j.trd.2011.10.003. [34] PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: Concepts, models and combined speedrouting scenarios[J]. Transportation Research Part C, 2014, 44: 52-69, DOI: 10.1016/j.trc. 2014.03.001. [35] DULEBENETS M A. A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping[J]. International Journal of Production Economics, 2018, 196: 293- 318, DOI: 10.1016/j. ijpe.2017.10.027. [36] WEN M, PACINO D, KONTOVAS C A, et al. A multiple ship routing and speed optimization problem under time, cost and environmental objectives[J]. Transportation Research Part D, 2017, 52: 303-321, DOI: 0.1016/j. trd.2017.03.009. [37] WANG C, CHEN J. Strategies of refueling, sailing speed and ship deployment of containerships in the low-carbon background[J]. Computers & Industrial Engineering, 2017, 114: 142-150, DOI: 10.1016/j.cie.2017.10.012. [38] DE A, WANG J, TIWARI M K. Hybridizing basic variable neighborhood search with particle swarm optimization for solving sustainable ship routing and bunker management problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1- 12, DOI: 10.1109/TITS. 2019.2900490. [39] 俞姗姗, 汪传旭. 不同碳排放调控政策下的船舶航速 优化[J]. 大连海事大学学报, 2015, 41(3): 45-50. [YU S S, WANG C X. Ship speed optimization under varied policies for carbon emissions regulation[J]. Journal ofDalian Maritime University, 2015, 41(3):45-50.] [40] 邢玉伟, 杨华龙, 张燕. 考虑碳税成本的班轮航线配船 与航速优化[J]. 上海海事大学学报, 2017, 38(4): 1-5. [XING Y W, YANG H L, ZHANG Y. Fleet deployment and speed optimization of liners considering carbon tax cost[J]. Journal of Shanghai Maritime University, 2017, 38(4): 1-5.] [41] CARIOU P. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping?[J]. Transportation Research Part D, 2011, 16(3): 260- 264, DOI: 10.1016/j.trd.2010. 12.005. [42] KONTOVAS C A, PSARAFTIS H N. Reduction of emissions along the maritime intermodal container chain [J]. Maritime Policy & Management, 2011, 38 (4): 455- 473, DOI: 10.1080/ 03088839. 2011.588262. [43] LINDSTAD H, ASBJØRNSLETT B E, STRØMMAN A H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds[J]. Energy Policy, 2011, 39 (6): 3456-3464, DOI: 10.1016/j.enpol.2011.03.044. [44] WANG S, MENG Q. Liner ship route schedule design with sea contingency time and port time uncertainty[J]. Transportation Research Part B, 2012, 46(5): 615- 633, DOI:10.1016/j.trb.2012. 01.003. [45] WANG S, MENG Q. Robust schedule design for liner shipping services[J]. Transportation Research Part E, 2012, 48(6): 1093-1106, DOI: 10. 1016/ j.tre.2012.04.007. [46] AYDIN N, LEE H, MANSOURI S A. Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports[J]. European Journal of Operational Research, 2017, 259(1): 143-154, DOI: 10.1016/j.ejor.2016.10.002. [47] QI X, SONG D P. Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times[J]. Transportation Research Part E, 2012, 48(4): 863-880, DOI:10. 1016/j.tre.2012.02.001. [48] SONG D P, LI D, DRAKE P. Multi-objective optimization for planning liner shipping service with uncertain port times[J]. Transportation Research Part E, 2015, 84: 1- 22, DOI: 10.1016/j.tre. 2015.10.001. [49] NORLUND E K, GRIBKOVSKAIA I, LAPORTE G. Supply vessel planning under cost, environment and robustness considerations[J]. Omega, 2015, 57: 271- 281, DOI: 10.1016/j. omega.2015.05.006. [50] LEE C Y, LEE H L, ZHANG J H. The impact of slow ocean steaming on delivery reliability and fuel consumption[J]. Transportation Research Part E, 2015, 76: 176-190, DOI: 10.1016/j.tre. 2015.02.004. [51] ZHEN L, HU Y, WANG S, et al. Fleet deployment and demand fulfillment for container shipping liners[J]. Transportation Research Part B, 2019, 120: 15-32, DOI: 10.1016/j.trb.2018. 11.011. [52] DE A, MAMANDURU VKR, G A, et al. Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization[J]. Computers & Industrial Engineering, 2016, 96: 201- 215, DOI: 10.1016/j.cie.2016.04.002. [53] WANG Y, MENG Q, JIA P. Optimal port call adjustment for liner container shipping routes[J]. Transportation Research Part B, 2019, 128: 107- 128, DOI: 10.1016/j. trb.2019.07.015. [54] DU Y Q, CHEN Q S, LAM J S L, et al. Modeling the impacts of tides and the virtual arrival policy in berth allocation[J]. Transportation Science, 2015, 49(4): 939- 956, DOI: 10.1287/ trsc.2014.0568. [55] ZHEN L, SUN Q, ZHANG W, et al. Column generation for low carbon berth allocation under uncertainty[J]. Journal of the Operational Research Society, 2020: 1-16. [56] DOUDNIKOFF M, LACOSTE R. Effect of a speed reduction of containerships in response to higher energy costs in Sulphur Emission Control Areas[J]. Transportation Research Part D, 2014, 28: 51-61, DOI: 10.1016/j.trd.2014.03.002. [57] FAGERHOLT K, GAUSEL N T, RAKKE J G, et al. Maritime routing and speed optimization with emission control areas[J]. Transportation Research Part C, 2015, 52: 57-73, DOI: 10.1016/j.trc.2014.12.010. [58] FAGERHOLT K, PSARAFTIS H N. On two speed optimization problems for ships that sail in and out of emission control areas[J]. Transportation Research Part D, 2015, 39(1): 56-64, DOI: 10.1016/j.trd. 2015.06.005. [59] LINDSTAD H, SANDAAS I, STRØMMAN A H. Assessment of cost as a function of abatement options in maritime emission control areas[J]. Transportation Research Part D, 2015, 38: 41- 48, DOI: 10.1016/j.trd. 2015.04.018. [60] GU Y, WALLACE S W. Scrubber: A potentially overestimated compliance method for the emission control areas: The importance of involving a ship's sailing pattern in the evaluation[J]. Transportation Research Part D, 2017, 55: 51-66, DOI:10.1016/j.trd.2017.06.024. [61] HUA J, WU Y, CHEN H. Alternative fuel for sustainable shipping across the taiwan strait[J]. Transportation Research Part D, 2017, 52: 254- 276, DOI: 10.1016/j. trd.2017.03.015. [62] ADLAND R, FONNES G, JIA H, et al. The impact of regional environmental regulations on empirical vessel speeds[J]. Transportation Research Part D, 2017, 53: 37- 49, DOI: 10.1016/ j.trd.2017.03.018. [63] CHANG Y T, PARK H K, LEE S, et al. Have emission control areas (ECAs) harmed port efficiency in Europe? [J]. Transportation Research Part D, 2018, 58: 39- 53, DOI: 10.1016/j.trd.2017.10.018. [64] CHEN L, YIP T L, MOU J. Provision of emission controlarea and the impact on shipping route choice and ship emissions[J]. Transportation Research Part D, 2018, 58: 280-291, DOI: 10. 1016/j.trd.2017.07.003. [65] LI L, GAO S, YANG W, et al. Ship's response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection[J]. Transportation Research Part E, 2020, 133, DOI: 10.1016/j.tre.2019.101835. [66] CARIOU P, CHEAITOU A, LARBI R, et al. Liner shipping network design with emission control areas: A genetic algorithm-based approach[J]. Transportation Research Part D, 2018, 63: 604- 621, DOI: 10.1016/j. trd.2018.06.020. [67] MA W H, LU T F, MA D F, et al. Ship route and speed multi-objective optimization considering weather conditions and emission control area regulations[J]. Maritime Policy & Management, 2020, DOI: 10.1080/ 03088839.2020.1825853. [68] ZHEN L, WU Y W, WANG S, et al. Green technology adoption for fleet deployment in a shipping network[J]. Transportation Research Part B, 2020, 139: 388- 410, DOI: 10.1016/j.trb.2020.06.004. [69] ZHUGE D, WANG S, ZHEN L, et, al. Schedule design for liner services under vessel speed reduction incentive programs[J]. Naval Research Logistics, 2020, 67: 45-62. [70] REINHARDT L B, PISINGER D, SIGURD M M, et al. Speed optimizations for liner networks with business constraints[J]. European Journal of Operational Research, 2020, 285: 1127- 1140, DOI: 10.1016/j.ejor. 2020.02. 043. [71] ZHEN L, HU Z, YAN R, et al. Route and speed optimization for liner ships under emission control polices [J]. Transportation Research Part C, 2020, 110: 330- 345, DOI: 10.1016/j.trc.2019.11.004. [72] DONG G, LEE P T W. Environmental effects of emission control areas and reduced speed zones on container ship operation[J]. Journal of Cleaner Production, 2020, 274, DOI: 10.1016/j.jclepro.2020.122582. [73] WANG S, ZHUGE D, ZHEN L, et al. Liner shipping service planning under sulfur emission regulations[J]. Transportation Science, 2021, 55(2): 491-509. [74] ZHUGE D, WANG S, WANG D Z W. A joint liner ship path, speed and deployment problem under emission reduction measures[J]. Transportation Research Part B, 2021, 144: 155-173, DOI: 10.1016/j.trb.2020.12.006. [75] AMMAR N R. An environmental and economic analysis of methanol fuel for a cellular container ship[J]. Transportation Research Part D, 2019, 69: 66-76, DOI: 10.1016/j.trd.2019. 02.001. [76] YANG D, PAN K, WANG S. On service network improvement for shipping lines under the one belt one road initiative of China[J]. Transportation Research Part E, 2018(117): 82–95, DOI: 10.1016 /j.tre.2017.07.003. [77] YANG D, JIANG L, ADOLF. One Belt One Road, but several routes: A case study of new emerging trade corridors connecting the Far East to Europe[J]. Transportation Research Part A, 2018(117): 190- 204. DOI: 10.1016/j.tra. 2018.08.001. [78] WEN X, MA H, CHOI T, et al. Impacts of the Belt and Road Initiative on the China-Europe trading route selections[J]. Transportation Research Part E, 2019(122): 581-604, DOI: 10.1016/j.tre. 2019.01.006. [79] PAN J, BELL M, CHEUNG K, et al. Identifying container shipping network bottlenecks along China's maritime silk road based on a spectral analysis[J]. Maritime Policy & Management, 2020, DOI: 10. 1080/03088839. 2020. 1841312. [80] ZHANG Y, JIN Y, SHEN B. Measuring the energy saving and CO2 emissions reduction potential under China's Belt and Road Initiative[J]. Computational Economics, 2020 (55): 1095-1116, DOI: 10. 1007/s10614-018-9839-0. [81] XIN X, WANG X, MA L, et al. Shipping network designinfrastructure investment joint optimization model: A case study of West Africa[J]. Maritime Policy & Management, 2021, DOI: 10.1080/03088839.2021. 1930225. [82] GONG Y, LI K, CHEN S, et al. Contagion risk between the shipping freight and stock markets: Evidence from the recent US- China trade war[J]. Transportation Research Part E, 2020(136): 101900, DOI: 10.1016/j. tre.2020.101900. [83] 王列辉, 叶斐, 郑渊博. 中美集装箱航运网络格局演化 与脆弱性评估[J]. 经济地理, 2020, 40(5): 136- 144. DOI: 10.15957/j.cnki.jjdl.2020.05.015. [WANG L H, YE F, ZHENG Y B. The assessment of Sino-US container shipping network evolution and vulnerability[J]. Economic Geography, 2020, 40(5): 136-144, DOI: 10.15957/j.cnki.jjdl.2020.05.015.] [84] SONG D P, DONG J X. Long- haul liner service route design with ship deployment and empty container repositioning[J]. Transportation Research Part B, 2013, 55: 188-211, DOI: 10. 1016/j.trb.2013.06.012. [85] AKYÜZ M H, LEE C Y. Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks[J]. Transportation Research Part B, 2016, 88: 46-71, DOI: 10.1016/j.trb.2016.02.007. [86] 胡坚堃, 彭子良, 黄有方. 集装箱班轮服务网络优化和 货运路径设计[J]. 上海海事大学学报, 2018, 39(3): 1- 5, 40. [HU J K, PENG Z L, HUANG Y F. Container liner shipping service network optimization and freight transport routing [J]. Journal of Shanghai Maritime University, 2018, 39(3): 1-5, 40.] [87] SONG D P, XU J. An operational activity-based methodto estimate CO2 emissions from container shipping considering empty container repositioning[J]. Transportation Research Part D, 2012, 17(1): 91- 96, DOI: 10.1080/15568318.2011.586095. [88] 沈二乐, 汪传旭, 许长延. 低碳化背景下海运集装箱空 箱调租优化[J]. 大连海事大学学报, 2015, 41(4): 90- 95. [SHEN E L, WANG C X, XU C Y. Optimizing empty container relocation and rent in the context of low-carbon maritime transportation [J]. Journal of Dalian Maritime University, 2015, 41(4): 90-95.] [89] GOH S H. The impact of foldable ocean containers on back haul shippers and carbon emissions[J]. Transportation Research Part D, 2019, 67: 514- 527, DOI: 10.1016/j.trd.2019.01. 003. [90] QIU X, WONG E Y C, LAM J S L. Evaluating economic and environmental value of liner vessel sharing along the maritime silk road[J]. Maritime Policy & Management, 2018, 45(3): 336- 350, DOI: 10. 1080/ 03088839.2018.1437285. [91] IRANNEZHAD E, PRATO C G, HICKMAN M. The effect of cooperation among shipping lines on transport costs and pollutant emissions[J]. Transportation Research Part D, 2018, 65: 312- 323, DOI: 10.1016/j. trd.2018.09.008. [92] LI C, QI X T, LEE C Y. Disruption recovery for a vessel in liner shipping[J]. Transportation Science, 2015, 49(4): 900-921, DOI: 10.1287/trsc.2015.0589. [93] LI C, QI X T, SONG D P. Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events[J]. Transportation Research Part B, 2016, 93: 762-788, DOI: 10.1016/j.trb.2015.10.004. [94] CHERAGHCHI F, ABUALHAOL I, FALCON R, et al. Modeling the speed-based vessel schedule recovery problem using evolutionary multiobjective optimization [J]. Information Sciences, 2018, 448-449: 53-74, DOI: 10.1016/j.ins.2018.03.013. [95] 邢江波. 集装箱班轮运输船期表设计优化及实时干扰 恢复[D]. 大连: 大连海事大学, 2018. [XING J B. Vessel schedule design optimization and real-time disruption recovery in container liner shipping [D]. Dalian: Dalian Maritime University, 2018.] [96] BROUER B D, DIRKSEN J, PISINGER D, et al. The vessel schedule recovery problem (VSRP): A MIP model for handling disruptions in liner shipping[J]. European Journal of Operational Research, 2013, 224(2): 362-374, DOI: 10.1016/j.ejor.2012.08.016. [97] MULDER J, DEKKER R. Designing robust liner shipping schedules: Optimizing recovery actions and buffer times[J]. European Journal of Operational Research, 2019, 272: 132- 146, DOI: 10.1016/j.ejor. 2018.05.066. [98] DE A, WANG J, TIWARI M K. Fuel bunker management strategies within sustainable container shipping operation considering disruption and recovery policies[J]. IEEE Transactions on Engineering Management, 2019: 1-23, DOI: 10.1109/TEM.2019.2923342. [99] LINDSTAD H, REHN C, ESKELAND G. Sulphur abatement globally in maritime shipping[J]. Transportation Research Part D, 2017(57): 303-313, DOI: 10.1016/j.trd.2017.09.028. [100] HALFF A, YOUNESB L, BOERSMA T. The likely implications of the new IMO standards on the shipping industry[J]. Energy Policy, 2019(126): 277- 286, DOI: 10.1016/j.enpol.2018.11.033. [101] MAITRA D, CHANDRA S, DASH S. Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification[J]. Transportation Research Part E, 2020(138): 101962, DOI: 10.1016/j. tre.2020.101962. [102] NOTTEBOOM T, PALLIS T, RODRIGUE J. Disruptions and resilience in global container shipping and ports: The COVID-19 pandemic versus the 2008—2009 financial crisis[J]. Maritime Economics & Logistics, 2021 (23): 179-210, DOI:10.1057/s41278-020-00180-5. [103] XU L, YANG S, CHEN J, et al. The effect of COVID-19 pandemic on port performance: Evidence from China[J]. Ocean and Coastal Management, DOI: 10.1016/j. ocecoaman.2021.105660. [104] NARASIMHA P, JENA P, MAJHI R. Impact of COVID- 19 on the Indian seaport transportation and maritime supply chain[J]. Transport Policy, 2021(110): 191- 203, DOI: 10.1016/j.tranpol.2021. 05.011. [105] CHOQEUT A, SAM A. Ports closed to cruise ships in the context of COVID-19: What choices are there for coastal states?[J]. Annals of Tourism Research, 2021(86): 103066, DOI: 10.1016/j.annals.2020.103066. |
[1] | WANG Jing-peng , ZHU Rui , WANG Peng-fei. Optimal Wage Level for Ride-sourcing Drivers Under Uncertainty of Travel Demand [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 178-185. |
[2] | CHEN Xiao-hong , LAN Qiu-yu. Interval Optimization Model of Intersection Signal Timing Under Uncertain Traffic Demand [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 247-256. |
[3] | LIAO Shi-guan , WENG Jin-xian, HU Shen-ping. A Capacity Estimation Approach for Waterway Traffic Under LNG Carriers Navigation Mode [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 290-297. |
[4] | ZHANG Chun-tian , QI Jian-guo , YANG Li-xing , GAO Yuan , GAO Zi-you. Robust Train Operation Plan Based on Uncertain Passenger Demands for High-speed Railway Corridors [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 115-123. |
[5] | JIN Zhi-hong , YAN Hong , WANG Xiao-han , XING Lei, XU Qi. Scheduling Optimization and Operation Mode Analysis on Ro-ro Tractor-and-trailer Transportation [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 142-151. |
[6] | LI De-chang, YANG Hua-long , ZHAO Shuai-qi, ZHENG Jian-feng. Joint Optimization of Vessel Scheduling and Refueling for Container Liner Shipping in Emission Control Areas [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 273-281. |
[7] | SHAO Fei , ZHANG Yong-feng , ZHEN Hong. Invulnerability Simulation Analysis of Chinese Iron Ore Imports Shipping Network [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 311-321. |
[8] | PENG Zi-xuan , YU Bin. Shipping Network Design for Waterbuses of Domestic and Foreign Trade in Yangtze River Economic Belt [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 322-331. |
[9] | LV Ying, GUO Chun, SUN Hui-jun, ZHI Dan-yue. Uncertainty of Energy and Environment Effects of Ride-hailing Considering Travel Competition [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 289-297. |
[10] | CHU Jin-hua, LI Jun-he , WANG Chun-juan , CHEN Chao. Integrated Decision on Route Planning and Speed Scheduling of Container Liners Considering Emission Control Areas [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 230-238. |
[11] | GE Jia-wei, YUAN Ke-biao, YIN Ming, WANG Xue-feng. Identifying Important Ports in Container Liner Shipping Network: A Perspective from Spreading Dynamic Theory [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 256-262. |
[12] | ZHAO Xu, ZHANG Hui-yan, HUANG Rui. Port Supply Chain Integration under Node Disruption and Demand Uncertainty [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 34-39. |
[13] | GE Yan-yan, WANG Shan-shan. Total Factor Productivity and Influencing Factors Analysis for Ports Considering Carbon Emissions [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 22-29. |
[14] | LIAO Shi-guan,YANG Dong, BAI Xi-wen,WENG Jin-xian. Estimation Method of Port Handling Efficiency Value Based on Ship Big Data [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 217-223. |
[15] | GAO Tian-hang, XU Li, JIN Lian-jie, GE Biao. Vessel Trajectory Prediction Considering Difference Between Heading and Data Changes [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 90-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||