[1] 郭继孚, 孙建平, 温慧敏, 等. 基于车载OBD数据的小汽车出行特征分析: 以北京市为例[J]. 城市交通,
2017, 15(5): 74-81. [GUO J F, SUN J P, WEN H M,
et al. Analysis of car travel characteristics based on
vehicle OBD data: Taking Beijing as an example[J].
Urban Traffic, 2017, 15(5): 74-81.]
[2] 张若讷. 融合多源数据的出行方式选择模型开发及应用 [D]. 上 海: 同济大学, 2018. [ZHANG R N.
Development of mode choice model by integrating
actively and passively collected travel data[D]. Shanghai:
Tongji University, 2018.]
[3] 北京交通发展研究院. 北京市交通发展年度报告[R].
北京: 北京交通发展研究院, 2021. [Beijing Transport
Institute. Beijing transport development annual report
[R]. Beijing: Beijing Transport Institute, 2021.]
[4] VOORT M D, DOUGHERTY M, WATSON S. Combining
kohonen maps with ARIMA time series models to
forecast traffic flow[J]. Transportation Research Part C:
Emerging Technologies, 1996, 4(5): 307-318.
[5] 郭欢, 肖新平, JEFFREY F. 基于 GM(1,1|τ,r) 模型的城市道路短时交通流预测[J]. 交通运输系统工程与信息, 2013, 13(6): 60-66. [GUO H, XIAO X P, JEFFREY
F. Urban road short-term traffic flow forecasting based on
the delay and nonlinear grey model[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2013, 13(6): 60-66.]
[6] MA X L, DAI Z, HE Z B, et al. Learning traffic as
images: A deep convolutional neural network for largescale transportation network speed prediction[J]. Sensors,
2017, 17(4): 818.
[7] 王祥雪, 许伦辉. 基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息, 2018, 18(1): 81-88.
[WANG X X, XU L H. Short-term traffic flow prediction
based on deep learning[J]. Journal of Transportation
Systems Engineering and Information Technology, 2018,
18(1): 81-88.]
[8] DU B W, PENG H, WANG S Z, et al. Deep irregular
convolutional residual LSTM for urban traffic passenger
flows prediction[J]. IEEE Transactions on Intelligent
Transportation Systems, 2020, 21(3): 972-985.
[9] ZHANG J X, QU S R, ZHANG Z T, et al. Improved
genetic algorithm optimized LSTM model and its
application in short-term traffic flow prediction[J]. Peer J
Computer Science, 2022, 8: e1048.
[10] SHAO B L, SONG D, BIAN G Q, et al. A hybrid
approach by CEEMDAN-Improved PSO-LSTM model for
network traffic prediction[J]. Security and
Communication Networks, 2022, 2022: 4975288.
[11] HU X, LIU T, HAO X, et al. Attention-based Conv-LSTM
and Bi-LSTM networks for large-scale traffic speed
prediction[J]. The Journal of Supercomputing, 2022, 78:
12686-12709.
[12] 李中昱, 葛红霞, 程荣军. 基于 BiLSTM 模型与数据去噪方案的交通流预测[J]. 中国物理B,2022, 31(4): 214-
223. [LI Z Y, GE H X, CHENG R J. Traffic flow
prediction based on BiLSTM model and data denoising
scheme[J]. Chinese Physics B, 2022, 31(4): 214-223.]
[13] GAO Y H, QU Z W, SONG X M, et al. Modeling of urban
road network traffic carrying capacity based on
equivalent traffic flow[J]. Simulation Modelling Practice
and Theory, 2022, 115: 102462.
[14] NARUEI I, KEYNIA F, MOLAHOSSEINI A S. Hunterprey optimization: Algorithm and applications[J]. Soft
Computing, 2022, 26: 1279-1314.
|