[1] JIN S T, KONG H, WU R, et al. Ridesourcing, the
sharing economy, and the future of cities[J]. Cities, 2018,
76: 96-104.
[2] CHEN M H, JAUHRI A, SHEN J P. Data driven
analysis of the potentials of dynamic ride pooling[C].
Proceedings of the 10th ACM SIGSPATIAL Workshop
on Computational Transportation Science, New York,
NY, USA: Association for Computing Machinery; 2017:
7-12.
[3] ZHANG H R, CHEN J Y, LI W J, et al. Mobile phone
GPS data in urban ridesharing: An assessment method
for emission reduction potential[J]. Applied Energy,
2020, 269: 115038.
[4] YU B Y, MA Y, XUE M M, et al. Environmental benefits
from ridesharing: A case of Beijing[J]. Applied Energy,
2017, 191: 141-152.
[5] CAI H, WANG X, ADRIAENS P, et al. Environmental
benefits of taxi ride sharing in Beijing[J]. Energy, 2019,
174: 503-508.
[6] YIN B, LIU L, COULOMBEL N, et al. Appraising the
environmental benefits of ridesharing: The Paris region
case study[J]. Journal of Cleaner Production, 2018, 177:
888-898.
[7] YAN L X, LUO X, ZHU R, et al. Quantifying and
analyzing traffic emission reductions from ridesharing: A
case study of Shanghai[J]. Transportation Research Part D: Transport and Environment, 2020, 89: 102629.
[8] LIU X H, LI W X, LI Y, et al. Quantifying environmental
benefits of ridesplitting based on observed data from
ridesourcing services[J]. Transportation Research
Record, 2675(8): 355-368.
[9] LI W X, PU Z Y, LI Y Y, et al. How does ridesplitting
reduce emissions from ridesourcing? A spatiotemporal
analysis in Chengdu, China[J]. Transportation Research
Part D: Transport and Environment, 2021, 95: 102885.
[10] LI T, PENG J, LI L C, et al. Revealing the varying impact
of urban built environment on online car-hailing travel in
spatio-temporal dimension: An exploratory analysis in
Chengdu, China[J]. Sustainability, 2019, 11(5): 1336.
[11] 韩印, 李媛媛, 李文翔, 等. 基于轨迹数据的网约车排放时空特征分析[J]. 交通运输系统工程与信息, 2022,
22(1): 234-242. [HAN Y, LI Y Y, LI W X, et al.
Analyzing spatiotemporal characteristics of ridesourcing
emissions based on trajectory data[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(1): 234-242.]
[12] LI W X, PU Z Y, LI Y, et al. Characterization of
ridesplitting based on observed data: A case study of
Chengdu, China[J]. Transportation Research Part C:
Emerging Technologies, 2019, 100: 330–353.
[13] SUI Y, ZHANG H R, SONG X, et al. GPS data in urban
online ridehailing: A comparative analysis on fuel
consumption and emissions[J]. Journal of Cleaner
Production, 2019, 227: 495-505.
[14] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A
new over-sampling method in imbalanced data sets
learning[C]// Proceedings of the 2005 international
conference on Advances in Intelligent ComputingVolume Part I, 2005.
[15] APLEY D W, ZHU J Y. Visualizing the effects of
predictor variables in black box supervised learning
models[J]. Journal of the Royal Statistical Society Series
B, 2020, 82(4): 1059-1086.
|