Journal of Transportation Systems Engineering and Information Technology ›› 2025, Vol. 25 ›› Issue (5): 1-24.DOI: 10.16097/j.cnki.1009-6744.2025.05.001
TIAN Daxin*, XIAO Xiao, ZHOU Jianshan
Received:2025-05-30
Revised:2025-07-15
Accepted:2025-07-22
Online:2025-10-25
Published:2025-10-25
Supported by:田大新*,肖啸,周建山
作者简介:田大新(1980—),男,河北唐山人,教授,博士。
基金资助:CLC Number:
TIAN Daxin, XIAO Xiao, ZHOU Jianshan. A Review of AI-driven Trajectory Prediction Methods for Autonomous Vehicles[J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 1-24.
田大新, 肖啸, 周建山. AI驱动的自动驾驶汽车轨迹预测方法综述[J]. 交通运输系统工程与信息, 2025, 25(5): 1-24.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.tseit.org.cn/EN/10.16097/j.cnki.1009-6744.2025.05.001
| [1] SOLTANI A, AFSHARI S, AMIRI M A. Time-series projecting road traffic fatalities in australia: Insights for targeted safety interventions [J]. Injury-International Journal of the Care of the Injured, 2025, 56(3): 17. [2] MITTAL V. LIM E. Patterns and analysis of traffic accidents in new york city between 2013 and 2023[J]. Urban Science, 2024, 8(4): 17. [3] 陈淑琬、赵鹏飞,刘丹丹,等. 2005-2021年中国道路交通事故死亡趋势分析[J]. 疾病监测,2025,40(1): 133-137. [CHEN S W. ZHAO PF, LIU D D. et al. Incidence trend of road traffic accident death in China, 2005-2021 [J]. Disease Surveillance, 2025, 40(1): 133-137.] [4] 杨智勇,杨俊,欧明辉,等. 智能网联汽车轨迹预测研究现状与趋势[J]. 重庆理工大学学报(自然科学), 2024, 38(9): 1-13. [YANG ZY, YANG J, OU M H, et al. Research status and trend of trajectory prediction for intelligent connected vehicles[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(9): 1-13.] [5] 龙皓明,薛振锋,陈卓,等. 智能驾驶车辆轨迹预测方法综述[J]. 兵工自动化,2024,43(5): 43-52. [LONG H M. XUE Z F. CHEN Z, et al. A survey of vehicle trajectory prediction methods for intelligent driving[J]. Ordnance Industry Automation, 2024, 43(5): 43-52.] [6] BRäNNSTRöM M, COELINGH E, SJöBERG J. Model-based threat assessment for avoiding arbitrary vehicle collisions [J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 658-669. [7] LYTRIVIS P THOMAIDIS G. AMDITIS A, et al. Cooperative path prediction in vehicular environments [C]//11th IEEE International Conference on Intelligent Transportation Systems (ITSC 2008), 2008: 803-808. [8] MILLER R, HUANG Q F, et al. An adaptive peer-to-peer collision warning system[C]//55th IEEE Vehicular Technology Conference (VTC 2002), 2002: 317-321. [9] KAEMPCHEN N. SCHIELE B. DIETMAYER K. Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios [J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(4): 678-687. [10] ZHANG B W, YU W G, JIA Y F, et al. Predicting vehicle trajectory via combination of model-based and data-driven methods using Kalman filter[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2024, 238(8): 2437-2450. [11] XU W D, PAN J, WEI J Q, et al. Motion planning under uncertainty for on-road autonomous driving[C]//IEEE International Conference on Robotics and Automation (ICRA), 2014: 2507-2512. [12] BARTH A. FRANKE U. Where will the oncoming vehicle be the next second?[C]//IEEE Intelligent Vehicles Symposium, 2008: 510-515. [13] BARRIOS C. MOTAI Y. Improving estimation of vehicle's trajectory using the latest global positioning system with Kalman filtering [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(12): 3747-3755. [14] XIAO W. ZHANG L, MENG D. Vehicle trajectory prediction based on motion model and maneuver model fusion with interactive multiple models[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(6): 3060-3071. [15] WANG YJ, LIU Z X, ZUO Z Q, et al. Trajectory planning and safety assessment of autonomous vehicles based on motion prediction and model predictive control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8546-8556. [16] OKAMOTO K, BERNTORP K. DI CAIRANO S. Driver intention-based vehicle threat assessment using random forests and particle filtering[C]//20th World Congress of the International Federation of Automatic Control (IFAC), 2017: 13860-13865. [17] HOUENOU A, BONNIFAIT P. CHERFAOUI V, et al. Risk assessment for collision avoidance systems[C]// IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), 2014: 386-391. [18] LI JC ZHAN W. HU Y P. et al. Generic tracking and probabilistic prediction framework and its application in autonomous driving [J]. IEEE Transactions on Intelligent Transportation Systems. 2020, 21(9): 3634-3649. [19] LAUGIER C, PAROMTCHIK I E, PERROLLAZ M, et al. Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3(4): 4-19. [20] GUO Y H. KALIDINDI V V, ARIEF M, et al. Modeling multi-vehicle interaction scenarios using gaussian random field[C]//IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), 2019: 3974-3980. [21] GOLI SA, FAR B H, FAPOJUWO A O, et al. Vehicle trajectory prediction with gaussian process regression in connected vehicle environment [C]//IEEE Intelligent Vehicles Symposium (IV), 2018: 550-555. [22] LIU HC, CHEN K, MA J, et al. Incremental learning-based real-time trajectory prediction for autonomous driving via sparse gaussian process regression[C]//IEEE Intelligent Vehicles Symposium (IV), 2024: 737-743. [23] KRAGER M, NOVO A S, NATTERMANN T, et al. Probabilistic lane change prediction using gaussian process neural networks[C]//IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), 2019: 3651-3656. [24] YE N, ZHANG Y Y, WANG R, et al. Vehicle trajectory prediction based on hidden markov model[J]. Ksii Transactions on Internet and Information Systems, 2016. 10(7): 3150-3170. [25] LONG K J. FEI Y, XING L, et al. Predicting vehicle trajectory of non-lane based driving behaviour with temporal fusion transformer [J]. Transportmetrica B: Transport Dynamics, 2024, 12(1): 24. [26] REN Y Y, ZHAO L, ZHENG X L, et al. A method for predicting diverse lane-changing trajectories of surrounding vehicles based on early detection of lane change [J]. IEEE Access, 2022, 10: 17451-17472. [27] SCHULZ J. HUBMANN C. LöCHNER J, et al. Interaction-aware probabilistic behavior prediction in urban environments[C]//25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 3999-4006. [28] SUN L. F, ZHAN W, WANG D, et al. Interactive prediction for multiple, heterogeneous traffic participants with multi-agent hybrid dynamic bayesian network[C // IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), 2019: 1025-1031. [29] TRENTIN V. ARTUNEDO A, GODOY J. et al. Multi-modal interaction-aware motion prediction al unsignalized intersections [J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(5): 3349-3365. [30] SCHREIER M, WILLERT V. ADAMY J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2751-2766. [31] TOMAR R S, VERMA S, KUSHWAH R S, et al. Collision avoidance warning for safe lane change [C]//3rd International Conference on Communication Systems and Network Technologies (CSNT), 2013: 385-389. [32] MANDALIA H M, SALVUCCI M D D. Using support vector machines for lane-change detection[C]// Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2005: 1965-1969. [33] ZHU X L HU W, DENG Z J, et al. Interaction-aware cut-in trajectory prediction and risk assessment in mixed traffic [J]. IEEE-Caa Journal of Automatica Sinica, 2022, 9(10): 1752-1762. [34] DOU Y L, YAN F J. FENG D W, et al. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers[C]// IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016: 901-906. [35] MIN K, KIM D, PARK J. et al. Run-based path prediction of obstacle vehicles with deep ensemble[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (10): 10252-10256. [36] ΜΙΝ Η Τ, XIONG X Y, WANG PY, et al. A hierarchical LSTM-based vehicle trajectory prediction method considering interaction information[J]. Automotive Innovation, 2024, 7(1): 71-81. [37] DAI S Z, LI L, LI Z H. Modeling vehicle interactions via modified LSTM models for trajectory prediction[J]. IEEE Access, 2019, 7: 38287-38296. [38] ZHI YS, BAO Z P, ZHANG S M, et al. Bigru based online multi-modal driving maneuvers and trajectory prediction[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2021, 235(14): 3431-3441. [39] KAILASAM R, RAJ V, BALASUBRAMANIAN PR. Enhancing vehicle trajectory prediction for V2V communication using a hybrid RNN approach[J]. Physical Communication, 2025, 71: 15. [40] SHEN C L, XIAO X, LI S N, et al. Improved attention mechanism for human-like intelligent vehicle trajectory prediction[J]. Electronics, 2023, 12(19): 13. [41] LIANG Y B, ZHAO Z. Nettraj: A network-based vehicle trajectory prediction model with directional representation and spatiotemporal attention mechanisms [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14470-14481. [42] CHEN H, WEI C F, LIU Y H, et al. Vulnerable traffic participant trajectory prediction based on gate recurrent unit-attention and ameliorative social force model[J]. IEEE Transactions on Transportation Electrification, 2024, 10(4): 9396-9405. [43] GUO HY. MENG QY, CAO D P, et al. Vehicle trajectory prediction method coupled with ego vehicle motion trend under dual attention mechanism [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 16. [44] VASWANI A, SHAZEER N. PARMAR N. et al. Attention is all you need[C]. Long Beach, CA, USA: 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017. [45] GENG MS, CHEN Y, XIA Y J. et al. Dynamic-learning spatial-temporal transformer network for vehicular trajectory prediction al urban intersections[J]. Transportation Research Part C: Emerging Technologies, 2023, 156: 24. [46] HOU L, LIS E, YANG B, et al. Structural transformer improves speed-accuracy trade-off in interactive trajectory prediction of multiple surrounding vehicles[J]. IEEE Transactions on Intelligent Transportation. Systems, 2022, 23(12): 24778-24790. [47] LU YH, XU PP. JIANG X Y, et al. Lane change prediction for autonomous driving with transferred trajectory interaction[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(4): 4543-4556. [48] WANG Z B, GUO JY, HU Z M, et al. Lane transformer: A high-efficiency trajectory prediction model[J]. IEEE Open Journal of Intelligent Transportation Systems, 2023,4: 2-13. [49] ISLAM Z. ABDEL-ATY M. ANIK B. Transformer-conformer ensemble for crash prediction using connected vehicle trajectory data[J]. IEEE Open Journal of Intelligent Transportation Systems, 2023, 4: 979-988. [50] IZQUIERDO R, QUINTANAR A, LORENZO J, et al. Vehicle lane change prediction on highways using efficient environment representation and deep learning [J]. IEEE Access, 2021, 9: 119454-119465. [51] XIE G. SHANGGUAN A N. FEI R, et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J]. Science China-Information Sciences, 2020, 63 (11): 21. [52] 杨达,刘家威,郑斌,等. 基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J]. 交通运输系统工程与信息,2024,24(2): 114-126. [YANG D, LIU JW. ZHENG B, et al. A vehicle lane-changing trajectory prediction model based ontemporal convolutional networks and attention mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(2): 114-126.] [53] SHEN X, LACAYO M, GUGGILLA N et al. Parkpredict plus: Multimodal intent and motion prediction for vehicles in parking lots with enn and transformer[C]// IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022: 3999-4004. [54] HU L, LI DC, LIAO J C. et al. Highway main lane vehicles driving behavior prediction based on residual-transformer [J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 14302-14312. [55] YANG M X, ZHANG BL, WANG TT, et al. Vehicle interactive dynamic graph neural network-based trajectory prediction for internet of vehicles[J]. IEEE Internet of Things Journal, 2024, 11(22): 35777-35790. [56] MENG QY GUO HY. LIU Y R, et al. Trajectory prediction for automated vehicles on roads with lanes partially covered by ice or snow [J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 6972-6986. [57] LIZ R, LU C, YI Y T, et al. A hierarchical framework for interactive behaviour prediction of heterogeneous traffic participants based on graph neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9102-9114. [58] 温惠英,张昕怡,黄俊达,等. 考虑动态交互作用的智能车辆轨迹预测[J]. 交通运输系统工程与信息、2024. 24(4): 60-68. [WEN HY. ZHANG XY HUANG JD, et al. Intelligent vehicle trajectory prediction consideringdynamic interactions [J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(4): 60-68. [59] XUD W. SHANG X T, LIU Y W Z, et al. Group vehicle trajectory prediction with global spatio-temporal graph[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1219-1229. [60] SHENG ZH, XUY W, XUES B, et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17654-17665. [61] CHEN C P. CHEN X B, YANG Y, et al. Sparse attention graph convolution network for vehicle trajectory prediction [J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 18294-18306. [62] FAN JP, WANG ZP, LIG Q, et al. Adversarial attack on trajectory prediction for autonomous vehicles with generative adversarial networks[C]//2024 International Conference on Intelligent Robots and Systems, 2024: 1026-1031. [63] HUO J. WANG LH. WEN X M, et al. Safety-aware vehicle trajectory prediction with spatiotemporal attentional gan in hybrid transportation system [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 13. [64] CHAI JZ, LIU JT, HUANG JL et al. Gacnet: Interactive prediction of surrounding vehicles behavior under high collision risk[J]. Advanced Intelligent Systems, 2025, 7(5): 18. [65] LI X, ROSMAN G, GILITSCHENSKI L, et al. Vehicle trajectory prediction using generative adversarial network with temporal logic syntax tree features[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3459-3466. [66] WEI CH. WU GY, BARTH M J. et al. Ki-gan: Knowledge-informed generative adversarial networks for enhanced multi-vehicle trajectory forecasting at signalized intersections[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024: 7115-7124. [67] ZHAO L ZHOU W, XU S X. et al. Multi-agent trajectory prediction at unsignalized intersections: An improved generative adversarial network accounting for collision avoidance behaviors[J]. Transportation Research Part C: Emerging Technologies, 2025, 171: 21. [68] RAKOS O, ARADI S, BECSI T, et al. Compression of vehicle trajectories with a variational autoencoder[J]. Applied Sciences-Basel, 2020, 10(19): 17. [69] IVANOVIC B. LEUNG K, SCHMERLING E et al. Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 295-302. [70] FENG X D. CEN Z P, HU J M, et al. Vehicle trajectory prediction using intention-based conditional variational autoencoder[C]//IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), 2019: 3514-3519. [71] LIU X, WANG Y F, JIANG K, et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19076-19087. [72] YANG Z, ZHANG RS, PANDEY G, et al. A hierarchical vehicle behavior prediction framework with traffic signals and interactive agents[J]. IEEE Transactions оп Intelligent Transportation Systems, 2023, 24(10): 11066-11079. [73] YANG B, YANG JC, NIRR, et al. Multi-granularity scenarios understanding network for trajectory prediction [J]. Complex & Intelligent Systems, 2023, 9(1): 851-864. [74] CHEN T, GUO CX, LI H, et al. An improved multimodal trajectory prediction method based on deep inverse reinforcement learning[J]. Electronics, 2022, 11(24): 16. [75] ZHANG Y F, WANG W S. BONATTI R, et al. Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road vehicle trajectories[C]. Zurich, Switzerland: 2nd Conference on Robot Learning, 2018. [76] LIU Y, ALSALEH R, SAYED T. Modelling motorized and non-motorized vehicle conflicts using multiagent inverse reinforcement learning approach[J]. Transportmetrica B: Transport Dynamics, 2024, 12(1): 23. [77] BUHET T. WIRBEL E, PERROTTON X, et al. Conditional vehicle trajectories prediction in carla urban environment[C]//IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 2310-2319. [78] ZIPFL M, SPICKERMANN S. ZOLLNER JM, et al. Utilizing hybrid trajectory prediction models to recognize highly interactive traffic scenarios[C]//IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023: 799-805. [79] WEISSMANN A, GORGES D. An empirical study on ego vehicle trajectory prediction for bicycles in urban environments based on conditional imitation learning|C // IEEE Intelligent Transportation Systems Conference (ITSC), 2021: 1482-1489. [80] LIU M, LIN FR, ZHANG Z, et al. An enhanced driving trajectory prediction method based on generative adversarial imitation learning C]//20th International Conference on Intelligent Computing (ICIC), 2024: 179-190. [81] WANG M. CUI J Q, WONG Y W. et al. Urban vehicle trajectory generation based on generative adversarial. imitation learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 18237-18249. [82] DAI SZ, LI Z H, II L, et al. A flexible and explainable vehicle motion prediction and inference framework combining semi-supervised aog and ST-LSTM[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 840-860. [83] MOXY, LIU HỌC, HUANG ZY, et al. Map-adaptive multimodal trajectory prediction via intention-aware unimodal trajectory predictors[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5651-5663. [84] PENG M X, GUO XS, CHEN X D, et al. LC-LLM: Explainable lane-change intention and trajectory predictions with large language models[J]. Communications in Transportation Research, 2025. 5: 13. [85] HU HY WANG Q, CHENG M, et al. Trajectory prediction neural network and model interpretation based on temporal pattern attention[J]. IEEE Transactions on Intelligent Transportation Systems. 2023, 24(3): 2746-2759. [86] ZHANG K. P. LI L. Explainable multimodal trajectory prediction using attention models[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 21. [87] LIMEROS SC, MAJCHROWSKA S, JOHNANDER J. et al. Towards explainable motion prediction using heterogeneous graph representations[J]. Transportation Research Part C: Emerging Technologies, 2023, 157: 18. [88] ZHU TH WANG L, FENG Y H, et al. Vehicle-group-based crash risk prediction and interpretation on highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(6): 7807-7818. [89] HWANG J J, XU R, LIN H, et al. Emma: End-to-end. multimodal model for autonomous driving [J]. ArXiv, 2024, abs/2410: 23262. [90] ZHANG, XIONG Y YANG Z. et al. Copilot4d: Learning unsupervised world models for autonomous driving via discrete diffusion [C]. Kigali, Rwanda: International Conference on Learning Representations, 2023. [91] ZHOU Z K, WANG JP, LIY H, et al. Query-centric trajectory prediction[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 17863-17873. [92] FANG LJ. JIANG Q H. SHI JP, et al. Tpnet: Trajectory proposal network for motion prediction C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 6796-6805. [93] HONG HT. LIN Y C, YANG X Q. et al. Heteta: Heterogeneous information network embedding for estimating time of arrival[C]//26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2020: 2444-2454. [94] BAI C, SHAO Z, ZHANG G, et al. Anything in any scene: Photorealistic video object insertion [J]. ArXiv, 2024, abs/2401: 17509. [95] ZHANG H, ZHOU W. ZHU Y, et al. Visionpad: A vision-centric pre-training paradigm for autonomous driving [J]. ArXiv, 2024, abs/2411:14716. |
| [1] | CHENG Guozhu, WANG Wenzhi, YANG Zihan, WANG Guopeng, CHEN Yongsheng, GU Shuang. Review of Connected and Autonomous Vehicle Dedicated Lane Setup [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 25-39. |
| [2] | WU Fuwei, YANG Hui, MA Yong, CUI Tongchuan, YAN Shengyu, ZHANG Zhi. Impact of Two-stage Warning on Takeover Performance of L3 Autonomous Vehicles [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 40-49. |
| [3] | DOU Xueping, YANG Minghui, XIONG Jie. Optimization Method for Autonomous Bus Operation Considering Adaptive Control Points [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 50-58. |
| [4] | SONG Lang, HU Xiaowei, YU Shanchuan, AN Shi. Cooperative Optimization of Lane Allocation and Vehicle Trajectory at Intersections Under Connected-and-Automated-Vehicle Environment [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 59-71. |
| [5] | WANG Dianhai, WANG Yifei, HUANG Yulang, LIU Yong, ZENG Jiaqi. Estimating Link Travel Time Under Sparse License Plate Recognition Device Coverage [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 83-90. |
| [6] | LIN Peiqun, HUANG Chaoshuo, ZHOU Chuhao, PANG Chonghao, DENG Kaiyu. A Data-driven Cellular Transmission Model for Self-learning on Expressways [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 103-113. |
| [7] | LI Chuanyao, ZHANG Mengdan, TANG Tieqiao. Equilibrium Analysis of Bi-mode Morning Commute Considering Modular Bus Supply Constraints [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 205-214. |
| [8] | SHEN Pengju, SONG Liying, LIN Chuanqian. Anomaly Detection and Incremental Clustering Method for High-speed Train Delay Data [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 236-247. |
| [9] | YANG Jing, HOU Yuqing, XIE Yuchen, YANG Anan. Multi-task Cooperative Prediction of Short-term Origin-Destination Flows in Urban Rail Transit Networks [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(5): 261-270. |
| [10] | YAO Zhenxing, LIU Xian, ZHAO Yifei, WANG Liang, WANG Yanchen. Adaptive Trip Ends Identification Method Under Uneven Positioning of Mobile Signaling [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 44-52. |
| [11] | ZHANG Peng, LI Xingwang, GI Binghao, SUN Chao, LI Wenquan. Green Wave Optimization Model for Coordinated Traffic Flow of Buses and Social Vehicles at Intersections with Repeated Releases [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 53-62. |
| [12] | DAI Liang, DU Pengfei, HUANG Zibin, YANG Pengbo. Hierarchical Collaborative Control of Urban Traffic Signals Based on Deep Reinforcement Learning [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 63-72. |
| [13] | WANG Pangwei, WANG Simiao, LEI Fangshu, XU Jinghui, WANG Zipeng, WANG Li. Intelligent Signal Control Method Under HybridAction Representation Reinforcement Learning for Urban Intersections [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 73-83. |
| [14] | WANG Lianzhen, SHEN Chaowen, WANG Yuping, XUE Shuqi. Gap-optimized Cooperative Merging Control Method for Freeway On-ramp Area in Connected Vehicle Environment [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 84-95. |
| [15] | WANG Weifeng, HUANG Jianxin, WANG Xiaoquan, WU Xinhan, BIAN Zixin. Multi-directional Vehicle Detection in Aerial Images Based on Anchor-free Oriented Bounding Box [J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 104-115. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||