Journal of Transportation Systems Engineering and Information Technology ›› 2006, Vol. 6 ›› Issue (6): 113-119 .

• Systems Engineering Theory and Methods • Previous Articles     Next Articles

Permanent-Magnet Linear Synchronous Motor Model Using NDEKF Neural Network on Hession

LV Gang,FAN Yu   

  1. Electric Engineering Institute,Beijing Jiaotong University,Beijing 100044,China

  • Received:2006-05-21 Revised:1900-01-01 Online:2006-12-20 Published:2006-12-20

基于Hession矩阵优化的NDEKF神经网络辨识永磁直线同步电机基于Hession矩阵优化的NDEKF神经网络辨识永磁直线同步电机

吕刚,范瑜   

  1. 北京交通大学 电气工程学院,北京100044

Abstract:

The modeling of permanent-magnet linear synchronous motor is very important to the control and the static and dynamic characters analysis of the system.First,the nonlinear autoregressive with exogenous inputs model is expanded into the polynomial function,then the condition which true ranks satisfy is presented by using residual signal analysis.In order to overcome the shortages that the design of network structure is depended on one’s own personal experience,Hession-based network pruning is used to get the optimization network structures. Some shortages of BP(back-propagation algorithm) are considered,so NDEKF((node-decoupled extend/Kalman filter) is applied to train networks.The experiment results show that the hybrid neural networks of the nonlinear autoregressive with exogenous inputs can identified object’s(a vertical transport system driven by permanent-magnet linear synchronous motor) ranks precisely,and the output of networks is very close to the experimental result.In the experiments,the perform ance of NDEKF is often superior to that of BP,while requiring significantly fewer presentations of training data than BP and less over training time than that of BP.

Key words: neural networks, permanent-magnet linear synchronous motor, identification, Hession, NDEKF

摘要: 永磁直线同步电动机模型的建立对研究其稳态特性、动态特性和控制策略都是非常重要的。首先,将带外部输入的非线性自回归模型展成多项式形式,然后在此基础上用残差分析法导出真实的阶次所满足的条件。为了克服神经网络结构依靠人工试凑的不足,使用基于Hession矩阵的修剪法来优化其结构。考虑到BP算法的一些固有缺点,使用NDEKF(基于节点的解耦扩展Kalman滤波器算法)来训练网络。实验证明,网络的输出结果与试验样机(永磁直线同步电动机驱动的垂直运输系统)的实际输出十分接近;同时将NDEKF与BP算法进行对比,NDEKF算法具有收敛较快、泛化能力强、不易陷入局部极小等特点。

关键词: 神经网络, 永磁直线同步电动机垂直运输系统, 辨识, Hession矩阵, NDEKF