[1] Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, l0(5): 988-999.
[2] 骆世广, 叶赛, 胡蓉. 基于多输出支持向量机的物流量预测研究[J]. 华东交通大学学报, 2010,27(5): 67-71. [LUO S G, YE S, HU R. A research of forecasting the logistics amount based on multi-output support vector regression[J]. Journal of East China Jiaotong University, 2010,27(5): 67-71.]
[3] 胡燕祝, 吕宏义. 基于支持向量回归机的物流需求预测模型研究[J]. 物流技术, 2008, 27(5): 66-68. [HU Y Z, LU H Y. Study on logistics demand forecast model based on support vector regression[J]. Logistics Technology, 2008, 27(5): 66-68.]
[4] Suykens J T, Van G I. Least squares support vector machines[M]. Singapore: Singapore Word Scientific, 2002: 13-15.
[5] 李泓泽, 郭森, 李春杰. 果蝇优化最小二乘支持向量机混合预测模型——以我国物流需求量预测为例[J]. 经济数学, 2012, 29(3): 103-106. [LI H Z, GUO S, LI C J. A hybrid forecasting model based on fruit fly optimization algorithm and least squares support vector machine: the case of logistics demand forecasting ofChina[J]. Journal of Quantitative Economics, 2012, 29 (3): 103-106.]
[6] 耿立艳,赵鹏,张占福. 基于二阶振荡微粒群最小二乘支持向量机的物流需求预测[J]. 计算机应用研究, 2012, 29(7): 2558-2560.[GENG L Y, ZHAO P, ZHANG Z F. Logistics demand forecasting based on LSSVM optimized by two-order oscillating PSO[J]. Application Research of Computers, 2012, 29(7): 2558-2560.]
[7] 耿立艳,丁璐璐. 基于灰关联分析的最小二乘支持向量机物流需求预测[J]. 物流技术, 2013,32(10): 130- 132,135. [GENG L Y, DING L L. Forecast of logistics demand based on grey correlation analysis and least square SVM[J]. Logistics Technology, 2013, 32(10): 130-132, 135.]
[8] 梁毅刚, 耿立艳, 张占福. 基于核主成分-最小二乘支持向量机的区域物流需求预测[J]. 铁道运输与经济, 2012, 34(11): 63- 67. [LIANG Y G, GENG L Y, ZHANG Z F. Forecast of regional logistic demand based on KPCA-LSSVM[J]. Railway Transportation and Economy, 2012, 34(11): 63-67.]
[9] Hongbo Xu, Guohua Chen. An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO[J]. Mechanical Systems and Signal Processing, 2013, 35: 167-175. |