Journal of Transportation Systems Engineering and Information Technology ›› 2012, Vol. 12 ›› Issue (6): 157-163.

• Systems Engineering Theory and Methods • Previous Articles     Next Articles

Track Irregularity Time Series Incidence Degree and Its Developments Trend Forecast

JIA Chao-longa, XU Wei-xiangb, WANG Han-ninga   

  1. a.State Key Laboratory of Rail Traffic Control and Safety; b. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
  • Received:2012-07-05 Revised:2012-08-20 Online:2012-12-25 Published:2012-12-29

轨道不平顺时间序列关联度及其变化趋势研究

贾朝龙a,徐维祥*b,王寒凝a   

  1. 北京交通大学 a.轨道交通控制与安全国家重点实验室; b. 交通运输学院,北京 100044
  • 作者简介:贾朝龙(1979-),男,辽宁铁岭人,博士生.
  • 基金资助:

    国家自然科学基金面上项目(61272029);国家科技支撑计划项目(2009BAG12A10);铁道部重大项目(2008G017A);轨道交通控制与安全国家重点实验室项目(RCS2009ZT007).

Abstract:

Track geometry inspection data reflects the change of track geometry state. It is a time series which changes over time with random characteristics. In this paper, seven gray incidence degree models are used to analyze track irregularity time series data and to examine the implied relationship between the time series data. The improved grey GM (1, 1) after residual error correction and adaptive improvement, stochastic linear AR and Kalman filtering models are applied to analyze track irregularity of cross level in fixed measuring point and unit section, to explore the hidden laws among data from the random data sequence of the track cross level state changes and predict track state in short-term and long-term by applying the models. The results show that the model is feeeasible and meet the intended accuracy.

Key words: railway transportation, track irregularity, time series, grey model, gray incidence degree, Kalman filtering

摘要:

轨道几何形状检测数据是一个随时间变化具有随机特征的时间序列,反映轨道几何状态的变化.在本文中,灰色关联度理论用于研究轨道水平不平顺时间序列数据,挖掘时间序列数据之间隐含的关系;经过普遍适应性改进和残差修正改进的灰色GM(1,1)模型预测固定测点轨道不平顺长期状态变化趋势,随机线性AR和卡尔曼滤波模型分析单元区段轨道不平顺短期变化趋势,探索轨道状态变化随机数据序列中隐藏的规律并进行预测.短期和长期预测模型验证结果表明,三种模型是有效的,能够达到预期的精度.

关键词: 铁路运输, 轨道不平顺, 时间序列, 灰色模型, 灰色关联度, 卡尔曼滤波

CLC Number: