[1] 王子甲, 贾慧慧, 朱亚迪, 等. 基于智能卡数据的轨道与公交复合网络通勤方式选择行为研究[J]. 交通运输系统工程与信息, 2022, 22(1): 67-73. [WANG Z J, JIA
H H, ZHU Y D, et al. Commuting mode choice behavior
in rail and bus composite network based on smart card
data[J]. Journal of Transportation Systems Engineering
and Information Technology, 2022, 22(1): 67-73.]
[2] NASSIR N, HICKMAN M, MA Z L. Activity detection
and transfer identification for public transit fare card data
[J]. Transportation, 2015, 42(4): 683-705.
[3] CARDOZO O D, GARCIA PALOMARES J C,GUTIERREZ J. Application of geographically weighted
regression to the direct forecasting of transit ridership at
station-level[J]. Applied Geography, 2012, 34: 548-558.
[4] WU P, XU L, ZHONG L, et al. Revealing the
determinants of the intermodal transfer ratio between
metro and bus systems considering spatial variations[J].
Journal of Transport Geography, 2022, 104: 103415.
[5] TU W, CAO R, YUE Y, et al. Spatial variations in urban
public ridership derived from GPS trajectories and smart
card data[J]. Journal of Transport Geography, 2018, 69:
45-57.
[6] CHEN E, YE Z, WU H. Nonlinear effects of built
environment on intermodal transit trips considering
spatial heterogeneity[J]. Transportation Research Part D:
Transport and Environment, 2021, 90: 102677.
[7] 陈坚, 刘柯良, 李武, 等. 社区建成环境对机动车行驶里程影响的空间异质性模型[J]. 交通运输系统工程与信息, 2022, 22(6): 124-133. [CHEN J, LIU K L, LI
W, et al. Spatial heterogeneity odel of impact of
community built environment on vehicle miles traveled
[J]. Journal of Transportation Systems Engineering and
Information Technology, 2022, 22(6): 124-133.]
[8] SU S, ZAO C, ZHOU H, et al. Unraveling the relative
contribution of TOD structural factors to metro ridership:
A novel localized modeling approach with implications
on spatial planning[J]. Journal of Transport Geography,
2022, 100: 103308.
[9] 陈启香, 吕斌, 陈喜群, 等. 空间异质性建成环境对出租车与地铁竞合关系的影响[J]. 交通运输系统工程与信息, 2022, 22(3): 25-35. [CHEN Q X, LV B, CHEN X
Q, et al. Impacts of built environment on competition and
cooperation relationship between taxi and subway
considering spatial heterogeneity[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(3): 25-35.]
[10] WU P, XU L, LI J, et al. Recognizing real-time transfer
patterns between metro and bus systems based on spatialtemporal constraints[J]. Journal of Transportation
Engineering, Part A: Systems, 2022, 148(9): 04022065.
[11] 彭飞, 宋国华, 朱珊. 城市公共交通常乘客通勤出行提取方法[J]. 交通运输系统工程与信息, 2021, 21(2):
158-165, 172. [PENG F, SONG G H, ZHU S. A method
for extracting commuting trips of frequent passengers in
urban public transportation[J]. Journal of Transportation
Systems Engineering and Information Technology, 2021,
21(2): 158-165, 172.]
[12] FOTHERINGHAM A S, YANG W, KANG W. Multiscale geographically weighted regression (MGWR) [J].
Annals of the American Association of Geographers,
2017, 107(6): 1247-1265.
|