[1] An D D, Tong X, Liu K, et al. Understanding the impact of built environment on metro ridership using open source in Shanghai [J]. Cities, 2019, 93, 177-187.
[2] Li X, Liu Y, Gao Z G, et al. Decision tree based station-level rail transit ridership forecasting [J]. Journal of Urban Planning and Development, 2016, 142(4), 4016011.
[3] 戢晓峰, 乔新. 建成环境对行人交通事故严重程度的非线性影响[J]. 交通运输系统工程与信息, 2023, 23(1): 314-323. [Ji X F, Qiao X. Nonlinear influence of built environment on pedestrian traffic accident severity [J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 314-323.]
[4] 陈坚, 刘柯良, 邸晶, 等. 建成环境对城市停车需求影响的非线性模型[J]. 交通运输系统工程与信息, 2021, 21(4): 197-203. [Chen J, Liu K L, Di J, et al. Nonlinear model of impact of built environment on urban parking demand [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 197-203.]
[5] 陈启香, 吕斌, 陈喜群, 等. 空间异质性建成环境对出租车与地铁竞合关系的影响[J]. 交通运输系统工程与信息, 2022, 22(3): 25-35. [Chen Q X, Lv B, Chen X Q, et al. Impacts of built environment on competition and cooperation relationship between taxi and subway considering spatial heterogeneity [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 25-35.]
[6] Zheng Z C, Zhang J F, Zhang L J, et al. Understanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: A fine-scale empirical study from China [J]. Cities, 2022, 126, 103706.
[7] Yang H T, Zheng R, Li X, et al. Nonlinear and threshold effects of the built environment on e-scooter sharing ridership [J]. Journal of Transport Geography, 2022, 104, 103453.
[8] Shao Q F, Zhang W J, Cao X Y, et al. Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning [J]. Journal of Transport Geography, 2020, 89, 102878.
[9] 崔叙, 喻冰洁, 杨林川, 等. 城市轨道交通出行的时空特征及影响因素非线性机制—基于梯度提升决策树的成都实证[J]. 经济地理, 2021, 41(7): 61-72. [Cui X, Yu B J, Yang L C, et al. Spatio-temporal characteristics and non-linear influencing factors of urban rail transit: The case of Chengdu using the gradient boosting decision tree [J]. Economic Geography. 2021, 41(7): 61-72.]
[10] Gan Z X, Yang M, Feng T, et al. Examining the relationship between built environment and metro ridership at station-to-station level [J]. Transportation Research Part D, 2020, 82, 102332.
[11] Li Z Q. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost [J]. Computers, Environment and Urban Systems, 2022, 96, 101845.
[12] 彭诗尧, 陈绍宽, 许奇, 等. 基于POI的土地利用与轨道交通客流的空间特征[J]. 地理学报, 2021, 76(2): 459-470. [Peng S Y, Chen S K, Xu Q, et al. Spatial characteristics of land use based on POI and urban rail transit passenger flow [J]. Acta Geographica Sinica, 2021, 76(2): 459-470.]
[13] Li S Y, Lyu D J, Huang G P, et al. Spatially varying impact of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China [J]. Journal of Transport Geography, 2020, 82, 102631.
[14] 高德辉, 许奇, 陈培文, 等. 城市轨道交通客流与精细尺度建成环境的空间特征分析[J]. 交通运输系统工程与信息, 2021, 21(6): 25-32. [Gao D H, Xu Q, Chen P W, et al. Spatial characteristics of urban rail transit passenger flows and fine-scale built environment [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 25-32.]
[15] Ewing R, Cervero R. Travel and the built environment: A synthesis [J]. Transportation Research Record, 2001, 1780, 87-114.
[16] 中国国际工程咨询有限公司. 2021年中国城市轨道交通沿线发展态势年度报告[EB/OL]. https://mp.weixin.qq.com/s/sJ5ZEoqJOoul40Qn-inROg, 2022-12-08/2023-04-03. [China International Engineering Consulting Corporation. Annual Report on the Development Trend of Urban Rail Transit in China [EB/OL]. https://mp.weixin.qq.com/s/sJ5ZEoqJOoul40Qn-inROg, 2022-12-08/2023-04-03.]
|