[1] 彭挺, 周涛, 蔡晓禹. 基于属性加权回归的组团式城市轨道交通进出站客流预测模型研究[J]. 交通运输系统工程与信息, 2023, 23(1): 176-186. [PENG T, ZHOU T,
CAI X Y. Research on the prediction model of passenger
flow in and out of rail transit station for group city based
on attribute weighted regression[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(1): 176-186.
[2] 马壮林, 杨兴, 胡大伟, 等. 城市轨道交通车站客流特征影响程度分析[J]. 清华大学学报(自然科学版),
2023, 22(4): 1-12. [MA Z L, YANG X, HU D W, et al.
Influence degree analysis of ridership characteristics at
urban rail transit stations[J]. Journal of Tsinghua
University (Science & Technology), 2023, 22(4): 1-12.]
[3] 郭平. 城市轨道交通客流特征及预测相关问题[J]. 城市轨道交通研究, 2010, 13(1): 58- 62. [GUP P. On
characteristics and prediction of urban rail transit
passenger flow[J]. Urban Mass Transit, 2010, 13(1): 58-
62.]
[4] LI S Y, LYU D J, HUANG G P, et al. Spatially varying
impacts of built environment factors on rail transit
ridership at station level: A case study in Guangzhou,
China[J]. Journal of Transport Geography, 2020, 82(1):
102631.
[5] ZHU Y D, CHEN F, WANG Z J, et al. Spatio-temporal
analysis of rail station ridership determinants in the built
environment[J]. Transportation, 2019, 46: 2269-2289.
[6] 马超群, 潘杰, 王云. 基于 PLSR 建模的地铁车站客流与周边用地关系分析[J]. 重庆理工大学学报(自然科学), 2019, 33(5): 113-120. [MA C Q, PAN J, WANG Y.
Research on the relationship between and use and
passenger volume based on PLSR[J]. Journal of
Chongqing University of Technology(Natural Science),
2019, 33(5): 113-120.]
[7] 陈启香, 吕斌, 陈喜群, 等. 空间异质性建成环境对出租车与地铁竞合关系的影响[J]. 交通运输系统工程与信息, 2022, 22(3): 25-35. [CHEN Q X, LV B, CHEN X
Q, et al. Impacts of built environment on competition and
cooperation relationship between taxi and subway
considering spatial heterogeneity[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(3): 25-35.]
[8] CHEN L, LU Y, LIU Y F, et al. Association between built
environment characteristics and metro usage at station
level with a big data approach[J]. Travel Behaviour and
Society, 2022, 28: 38-49.
[9] CHEN C, FENG T, DING C, et al. Examining the
spatial-temporal relationship between urban built
environment and taxi ridership: Results of a
semi-parametric GWPR model[J]. Journal of Transport
Geography, 2021, 96(10): 103172.
[10] LI S Y, LYU D J, LIU X P, et al. The varying patterns of
rail transit ridership and their relationships with
fine-scale built environment factors: Big data analytics
from Guangzhou[J]. Cities, 2020, 99(4): 102580.
[11] LI X Y, GOBI K S, LI R W. Identify impacting factor for
urban rail ridership from built environment spatial
heterogeneity[J]. Case Studies on Transport Policy, 2022,
10(2): 1159-1171.
[12] HUANG B, WU B, MICHAEL B. Geographically and
temporally weighted regression for modeling
spatio-temporal variation in house prices[J]. International
Journal of Geographical Information Science, 2010, 24
(3): 383-401.
[13] SHAO Q F, ZHANG W J, CAO X Y, et al. Threshold and
moderating effects of land use on metro ridership in
Shenzhen: Implications for TOD planning[J]. Journal of
Transport Geography, 2020, 89(12): 102878.
[14] YANG L C, YU B J, LIANG Y, et al. Time-varying and
non-linear associations between metro ridership and the
built environment[J]. Tunnelling and Underground Space
Technology, 2023, 132(2): 104931.
[15] DING C, CAO X Y, LIU C. How does the station-area
built environment influence Metrorail ridership? Using
gradient boosting decision trees to identify non-linear
thresholds[J]. Journal of Transport Geography, 2019, 77
(5): 70-78.
[16] 高德辉, 许奇, 陈培文, 等. 城市轨道交通客流与精细尺度建成环境的空间特征分析[J]. 交通运输系统工程与信息, 2021, 21(6): 25-32. [GAO D H, XU Q, CHEN P
W, et al. Spatial characteristics of urban rail transit
passenger flows and fine-scale built environment[J].
Journal of Transportation Systems Engineering and
Information Technology, 2021, 21(6): 25-32.]
[17] CHEN E H, YE Z R, WU H. Nonlinear effects of built
environment on intermodal transit trips considering
spatial heterogeneity[J]. Transportation Research, Part D:
Transport and Environment, 2021, 90(1): 102677.
[18] SHI R, XU X Y, LI J M, et al. Prediction and analysis of
train arrival delay based on XGBoost and Bayesian
optimization[J]. Applied Soft Computing, 2021, 109(9):
107538.
|