[1] ZHANG M, LI Y. Generational travel patterns in the
United States: New insights from eight national travel
surveys[J]. Transportation Research Part A: Policy and
Practice, 2022, 156: 1-13.
[2] SHEN L, STOPHER P R. Review of GPS travel survey
and GPS data-processing methods[J]. Transport Reviews,
2014, 34(3): 316-334.
[3] 肖光年, 隽志才, 高晶鑫. 基于GPS定位数据的出行端点推断[J]. 吉林大学学报(工学版), 2016, 46(3): 770-
776. [XIAO G N, JUAN Z C, GAO J X. Inference method
of trip ends based on GPS track data[J]. Journal of Jilin
University (Engineering and Technology Edition), 2016,
46(3): 770-776.]
[4] YANG Y, JIA B, YAN X, et al. Identifying intercity
freight trip ends of heavy trucks from GPS data[J].
Transportation Research Part E: Logistics and
Transportation Review, 2022, 157: 102590.
[5] YAO Z, YANG F, GUO Y, et al. Trip end identification
based on spatial-temporal clustering algorithm using
smartphone positioning data[J]. Expert Systems with
Applications, 2022, 197: 116734.
[6] YANG F, YAO Z, CHENG Y, et al. Multimode trip
information detection using personal trajectory data[J].
Journal of Intelligent Transportation Systems, 2016, 20
(5): 449-460.
[7] RASMUSSEN T K, INGVARDSON J B,
HALLDÓRSDÓTTIR K, et al. Improved methods to
deduct trip legs and mode from travel surveys usingwearable GPS devices: A case study from the Greater
Copenhagen area[J]. Computers, Environment and Urban
Systems, 2015, 54: 301-313.
[8] ZHOU X, YU W, SULLIVAN W C. Making pervasive
sensing possible: Effective travel mode sensing based on
smartphones[J]. Computers, Environment and Urban
Systems, 2016, 58: 52-59.
[9] 姚振兴, 许心越, 邵海鹏, 等. 基于手机 GPS 定位数据的交通方式换乘点识别方法研究[J]. 中国公路学报,
2021, 34(12): 276-287. [YAO Z X, XU X Y, SHAO H P,
et al. Method for traffic mode transfer behavior
identification by busing smartphone GPS data[J]. China
Journal of Highway Transport, 2021, 34(12): 276-287.]
[10] BALLI S, SAĞBAŞ E A. Diagnosis of transportation
modes on mobile phone using logistic regression
classification[J]. IET Software, 2018, 12(2): 142-151.
[11] YANG M, PAN Y, DARZI A, et al. A data-driven travel
mode share estimation framework based on mobile
device location data[J]. Transportation, 2022, 49(5):
1339-1383.
[12] WANG C, LUO H, ZHAO F, et al. Combining residual
and LSTM recurrent networks for transportation mode
detection using multimodal sensors integrated in
smartphones[J]. IEEE Transactions on Intelligent
Transportation Systems, 2020, 22(9): 5473-5485.
[13] XIAO G, JUAN Z, ZHANG C. Detecting trip purposes
from smartphone-based travel surveys with artificial
neural networks and particle swarm optimization[J].
Transportation Research Part C: Emerging Technologies,
2016, 71: 447-463.
[14] ERMAGUN A, FAN Y, WOLFSON J, et al. Real-time
trip purpose prediction using online location-based
search and discovery services[J]. Transportation
Research Part C: Emerging Technologies, 2017, 77: 96-
112.
[15] 宗芳, 齐厚成, 唐明, 等. 基于 GPS 数据的日出行模式 - 出 行 目 的 识 别 [J]. 吉 林 大 学 学 报 ( 工 学 版),
2018, 48(5): 1374-1379. [ZONG F, QI H C, TANG M,
et al. Identifying daily travel pattern-trip purpose using
GPS data[J]. Journal of Jilin University (Engineering and
Technology Edition), 2018, 48(5): 1374-1379.]
[16] 周洋, 杨超. 基于时空聚类算法的轨迹停驻点识别研究[J]. 交通运输系统工程与信息, 2018, 18(4): 88-95.
[ZHOU Y, YANG C. Anchor identification in trajectory
based on temporospatial clustering algorithm[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2018, 18(4): 88-95.]
[17] ZHOU Y, YUAN Q, YANG C, et al. Who you are
determines how you travel: Clustering human activity
patterns with a Markov-chain-based mixture model[J].
Travel Behaviour and Society, 2021, 24: 102-112.
[18] CHEN T, GUESTRIN C. Xgboost: A scalable tree
boosting system[C]//In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.
[19] SCHUESSLER N, AXHAUSEN K W. Processing raw
data from global positioning systems without additional
information[J]. Transportation Research Record, 2009,
2105(1): 28-36.
|