交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (5): 45-54.DOI: 10.16097/j.cnki.1009-6744.2023.05.005

• 智能交通系统与信息技术 • 上一篇    下一篇

基于手机GPS数据的个体出行链提取方法研究

周洋1, 2,杨超2, 3,郭唐仪*1   

  1. 1. 南京理工大学,自动化学院,南京 210094;2. 同济大学,交通运输工程学院,上海 201804; 3. 同济大学,城市交通研究院,上海 200092
  • 收稿日期:2023-07-12 修回日期:2023-08-05 接受日期:2023-08-08 出版日期:2023-10-25 发布日期:2023-10-22
  • 作者简介:周洋(1991- ),男,湖北荆州人,博士后。
  • 基金资助:
    国家重点研发计划(2019YFE0213800);南京市国际合作项目(202002013)。

Inferring Individual Trip Chains from Smartphone-based GPS Data

ZHOU Yang1,2,YANG Chao2,3,GUO Tang-yi*1   

  1. 1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China; 2. College of Transportation Engineering, Tongji University, Shanghai 201804, China; 3. Urban Mobility Institute, Tongji University, Shanghai 200092, China
  • Received:2023-07-12 Revised:2023-08-05 Accepted:2023-08-08 Online:2023-10-25 Published:2023-10-22
  • Supported by:
    National Key Research and Development Program of China (2019YFE0213800); Nanjing International Cooperative Project (202002013)。

摘要: 针对现状出行数据存在的人工获取成本高、时空信息不准确及出行链接不完整等问题,开发智能手机居民出行调查系统,研究基于手机GPS数据的全时段、多交通方式且完整链接的个体出行链提取方法。首先,应用时空密度聚类方法,识别个体轨迹中的停驻点,构建随机森林模型,从停驻点中区分出行端点;其次,以空间邻近匹配方法识别居家与工作活动,利用家庭和个人属性、活动时空与活动链等特征,以XGBoost模型推断非家非工作类型的出行目的;最后,采用轨迹微分方法,提取运动特征、出行特征与GIS特征,运用XGBoost模型推断出行方式。利用出行调查系统采集的实验数据,验证出行链提取方法。结果表明:停驻点识别查准率和查全率分别为96.7%和96.4%,出行端点查准率为97.6%,公交换乘点查准率为91.8%;出行目的推断上,“居家/回家”准确率为100%,“上班/上学”准确率为89.8%,非家非工作出行目的综合准确率为87.6%;出行方式推断上,各交通方式准确率均达到 90%以上,综合准确率为 95.0%。本文提供一种手机GPS轨迹数据的出行链挖掘方法,能够为智能手机居民出行调查现实应用提供支撑。

关键词: 城市交通, 出行链, XGBoost, GPS数据, 出行调查

Abstract: To address the limitations of current travel data, such as high-labor cost, inaccuracy in time and location, and missing trips, we develop a smartphone-based travel survey system and propose a method for inferring individual trip chains from smartphone GPS data with all-period, multimodal, and complete trips. Firstly, anchors are extracted from personal trajectories with a proposed spatiotemporal density-based clustering algorithm. The anchors are then classified into public transport transfer nodes and trip ends using a random forest model. Secondly, a spatial proximity matching method is used to identify residential and commuting activities. An XGBoost model is built with household and personal attributes, activity chain, and spatiotemporal characteristics. The model is employed to classify the types of non-home-non-work activities. Thirdly, we cut trip trajectory into trip slices and extract features referred to motion, trip, and GIS data, and infer travel mode by the XGBoost model. The proposed trip chain inference method is validated with an experimental dataset collected by travel survey system. Results show that the precision and recall of anchors extraction are 96.7% and 96.4%, respectively; the precision of identifying trip ends and public transport transfer nodes are 97.6% and 91.8%, respectively. For trip purpose inference, the model achieves accuracies of 100% for home, 89.8% for work/education, and 87.6% for non-home-non-work activities. For travel mode inference, each mode gets an accuracy of over 90%, and the comprehensive accuracy reaches 95.0%. This paper provides a method of mining trip chains from GPS trajectory to support the application of smartphone-based household travel surveys in the real world.

Key words: urban traffic, trip chain, XGBoost, GPS data, travel survey

中图分类号: