[1] BRIAND A S, COME E, TREPANIER M, et al.
Analyzing year-to-year changes in public transport
passenger behaviour using smart card data[J].
Transportation Research Part C: Emerging Technologies,
2017, 79(6): 274-289.
[2] MA X, WU Y J, WANG Y, et al. Mining smart card data
for transit riders' travel patterns[J]. Transportation
Research Part C: Emerging Technologies, 2013, 36: 1-
12.
[3] ECTORS W, KOCHAN B, JANSSENS D, et al.
Exploratory analysis of Zipf 's universal power law in
activity schedules[J]. Transportation, 2019, 46(5): 1689-
1712.
[4] NISHIUCHI H, KING J, TODOROKI T. Spatial-temporal
daily frequent trip pattern of public transport passengers
using smart card data[J]. International Journal of
Intelligent Transportation Systems Research, 2013, 11
(1): 1-10.
[5] LEI D, CHEN X, CHENG L, et al. Inferring temporal
motifs for travel pattern analysis using large scale smart
card data[J]. Transportation Research Part C: Emerging
Technologies, 2020, 120: 102810.
[6] MA X, LIU C, WEN H, et al. Understanding commuting
patterns using transit smart card data[J]. Journal of
Transport Geography, 2017, 58: 135-145.
[7] KIEU L M, BHASKAR A, CHUNG E. Passenger
segmentation using smart card data[J]. IEEE
Transactions on Intelligent Transportation Systems,
2015, 16(3): 1537-1548.
[8] GOULET-LANGLOIS G, KOUTSOPOULOS N H, ZHAO
Z, et al. Measuring regularity of individual travel patterns
[J]. IEEE Transactions on Intelligent Transportation
Systems, 2018, 19(5): 1583-1592.
[9] 何兆成, 余畅, 许敏行. 考虑出行模式和周期性的公交出行特征分析[J]. 交通运输系统工程与信息, 2016, 16
(6): 135-141. [HE Z C, YU C, XU M X. Analyzing
methods of residents' travel characteristics considering
travel patterns and periodicity[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2016, 16(6): 135-141.]
[10] MAHRSI M K E, CôME E, OUKHELLOU L, et al.
Clustering smart card data for urban mobility analysis[J].
IEEE Transactions on Intelligent Transportation
Systems, 2017, 18(3): 712-728.
[11] ZHONG J M, HE Z C, TIAN C. Uncovering quasi-periodicity of transit behavior based on smart card data
[J]. Journal of Transport Geography, 2019, 79: 102466.
[12] GOULET-LANGLOIS G, KOUTSOPOULOS H N, ZHAO
J. Inferring patterns in the multi-week activity sequences
of public transport users[J]. Transportation Research Part
C: Emerging Technologies, 2016, 64: 1-16.
[13] 陈君, 田朝军, 赵清梅, 等. 基于时空行为规律挖掘的公交乘客分类方法[J]. 交通运输工程学报, 2021, 21
(5): 274-285. [CHEN J, TIAN C J, ZHAO Q M, et al.
Bus passenger classification method based on spatial and
temporal behavior regularity mining[J]. Journal of Traffic
and Transportation Engineering, 2021, 21(5): 274-285.]
[14] EGU O, BONNEL P. Investigating day-to-day variability
of transit usage on a multi-month scale with smart card
data. A case study in Lyon[J]. Travel Behaviour and
Society, 2020, 19: 112-123.
|