[1] 毛保华, 高自友. 城市轨道交通网络运营资源共享方法与技术进展[J]. 交通运输系统工程与信息, 2018, 18
(3): 1-8. [MAO B H, GAO Z Y. Progress of operational
resources sharing methods for urban rail networks[J].
Journal of Transportation Systems Engineering and
Information Technology, 2018, 18(3): 1-8.]
[2] CERVERO R, KOCKELMAN K. Travel demand and the
3Ds: Density, diversity, and design[J]. Transportation
Research Part D: Transport and Environment, 1997, 2(3):
199-219.
[3] 高德辉, 许奇, 陈培文, 等. 城市轨道交通客流与精细尺度建成环境的空间特征分析[J]. 交通运输系统工程与信息, 2021, 21(6): 25-32. [GAO D H, XU Q, CHEN
P W, et al. Spatial characteristics of urban rail transit
passenger flows and fine-scale built environment[J].
Journal of Transportation Systems Engineering and
Information Technology, 2021, 21(6): 25-32.]
[4] ZHOU X, DONG Q, HUANG Z, et al. The spatially
varying effects of built environment characteristics on the
integrated usage of dockless bike-sharing and public
transport[J]. Sustainable Cities and Society, 2023, 89:
104348.
[5] 马壮林, 杨兴, 胡大伟, 等. 城市轨道交通车站客流特征影响程度分析[J]. 清华大学学报(自然科学版),
2023, 22(4): 1-12. [MA Z L, YANG X, HU D W, et al.
Influence degree analysis of ridership characteristics at
urban rail transit stations[J]. Journal of Tsinghua
University (Science & Technology), 2023, 22(4): 1-12.]
[6] 张壮, 邹哲, 崔扬, 等. 基于天津居民出行特征的轨道交通低客流思考[C]. 青岛: 中国城市规划学会城市交通规划学术委员会.创新驱动与智慧发展: 2018年中国城市交通规划年会论文集, 2018. [ZHANG Z, ZOU
Z, CUI Y, et al. Thinking on low passenger flow of rail
transit based on the travel characteristics of residents in
Tianjin[C]. Qingdao: Urban Transportation Planning
Academic Committee of Urban Planning Society of
China. Innovation-driven and Smart Development:
Proceedings of the 2018 China Urban Transportation
Planning Annual Conference, 2018.]
[7] LI S, LYU D, LIU X, et al. The varying patterns of rail
transit ridership and their relationships with fine-scale
built environment factors: Big data analytics from
Guangzhou[J]. Cities, 2020, 99: 102580.
[8] 尹芹, 孟斌, 张丽英. 基于客流特征的北京地铁站点类型识别[J]. 地理科学进展, 2016, 35(1): 126-134. [YIN
Q, MENG B, ZHANG L Y. Classification of subway
stations in Beijing based on passenger flow
characteristics[J]. Progress in Geography, 2016, 35(1):
126-134.]
[9] 谭德明, 李延欢. 可持续TOD建设视角下的轨道站点客流潜力模型构建[J]. 地球信息科学学报, 2022, 24
(12): 2356-2372. [TAN D M, LI Y H. Modelling the
passenger flow potential of rail stations from the
perspective of sustainable TOD construction[J]. Journal
of Geoinformation Science, 2022, 24(12): 2356-2372.]
[10] 王亭, 张永, 周明妮, 等. 融合网络拓扑结构特征与客流量的城市轨道交通关键节点识别研究[J]. 交通运输系统工程与信息, 2022, 22(6): 201-211. [WANG T,
ZHANG Y, ZHOU M N, et al. Identification of key
nodes of urban rail transit integrating network topology
characteristics and passenger flow[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(6): 201-211.]
[11] 陈坚, 刘柯良, 李武, 等. 社区建成环境对机动车行驶里程影响的空间异质性模型[J]. 交通运输系统工程与信息, 2022, 22(6): 124-133. [CHEN J, LIU K L, LI W,
et al. Spatial heterogeneity model of impact of community
built environment on vehicle miles traveled[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(6): 124-133.]
[12] 蒋阳升, 俞高赏, 胡路, 等. 基于聚类站点客流公共特征的轨道交通车站精细分类[J]. 交通运输系统工程与信息, 2022, 22(4): 106-112. [JIANG Y S, YU G S, HU
L, et al. Refined classification of urban rail transit
stations based on clustered station's passenger traffic
flow features[J]. Journal of Transportation Systems
Engineering and Information Technology, 2022, 22(4):
106-112.]
[13] LIU X, WU J, HUANG J, et al. Spatial-interaction
network analysis of built environmental influence on
daily public transport demand[J]. Journal of Transport
Geography, 2021, 92: 102991.
|