交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (4): 307-314.DOI: 10.16097/j.cnki.1009-6744.2023.04.031

• 工程应用与案例分析 • 上一篇    

出租车高效益行程特征

年光跃1,潘海啸*1,孙健2   

  1. 1. 同济大学,建筑与城市规划学院,上海 200092;2. 长安大学,未来交通学院,西安 710021
  • 收稿日期:2023-04-02 修回日期:2023-05-28 接受日期:2023-06-19 出版日期:2023-08-25 发布日期:2023-08-22
  • 作者简介:年光跃(1986- ),男,安徽蚌埠人,博士后
  • 基金资助:
    国家自然科学基金区域创新发展联合基金(U20A20330)

Exploring High-income Trip Characteristics of Taxis

NIAN Guang-yue1, PAN Hai-xiao*1, SUN Jian2   

  1. 1. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China; 2. School of Future Transportation, Chang'an University, Xi'an 710021, China
  • Received:2023-04-02 Revised:2023-05-28 Accepted:2023-06-19 Online:2023-08-25 Published:2023-08-22
  • Supported by:
    National Natural Science Foundation of China (NSFC) Regional Innovation Development Joint Fund Project (U20A20330)

摘要: 为提高出租车营运效率和服务水平,以重庆为案例,研究出租车行程特征与出租车驾驶员单位时间收入的关联机理。首先,基于关联的出租车营运数据和轨迹数据构建行程特征指标;其次,构建随机森林预测模型分析行程特征对单位时间收入的相对重要性及显著性;然后,构建多分类Logistic回归模型分析行程特征对单位时间收入的量化影响。研究结果表明:行程特征指标可用于预测驾驶员单位时间收入且准确性较好,送客速度、寻客时长、长单数量对平均单位时间收入预测的相对重要性最大;寻客行程迂回度、送客行程迂回度、寻客里程的增加会显著促使普通效益驾驶员降为低效益驾驶员,而寻客行程迂回度、寻客区域偏好度、寻客里程的减少及送客速度的增加会显著促使普通效益驾驶员上升为高效益驾驶员。高效益驾驶员具有寻客积极主动、不偏好特定区域、倾向预期通行速度快的短路径、有长单偏好但不刻意追求等特征。本文弥补了先前相关研究在行程特征与效益的关联性构建,多样化行程特征对单位时间收入的表征与预测,高效益出租车驾驶员营运特征勾勒等方面的不足;可为城市交通管理、出租车数量管控及运价调整等提供理论依据和技术支撑。

关键词: 城市交通, 单位时间收入, 随机森林, 多分类逻辑斯蒂回归, 出租车驾驶员, 行程指标

Abstract: To improve the operational efficiency and service level of taxis, the correlation mechanism between taxi trip characteristics and taxi drivers' income per unit time (IPUT) is studied based on the central area of Chongqing. A random forest prediction model is constructed to analyze the relative importance and significance of trip characteristics on IPUT. The results show that trip characteristics can be used to predict drivers' IPUT with good accuracy, and the relative importance of delivery speed, search time, and the number of long orders is the greatest in predicting the average IPUT. The increase in search trip detour, delivery trip detour, and search mileage significantly increases the probability that the middle-income drivers fall to the low-income drivers, while the decrease in search trip detour, search area preference, search mileage, and delivery speed significantly increase the probability that the middle-income drivers rise to the high-income drivers. High-income drivers have the characteristics of being proactive in searching for passengers, not preferring specific areas, tending to anticipate short routes with high travel speeds, and favoring long orders but not deliberately pursuing them. This study bridges the gaps in previous research on the construction of correlations between trip characteristics and benefits, the characterization and prediction of diverse trip characteristics on IPUT, and the outlining of operating characteristics of high-income taxi drivers. The study may provide theoretical references and technical support for urban traffic management, taxi quantity regulation, and fare adjustment.

Key words: urban traffic, wage rate, random forest, multinomial Logistic regression, taxi driver, trip indicator

中图分类号: