[1] YANG H, FUNG C S, WONG K I, et al. Nonlinear
pricing of taxi services[J]. Transportation Research Part
A: Policy and Practice, 2010, 44(5): 337-348. DOI:
10.1016/j.tra.2010.03.004.
[2] ZHANG K, CHEN Y, NIE Y (Marco). Hunting image:
Taxi search strategy recognition using Sparse Subspace
Clustering[J]. Transportation Research Part C: Emerging
Technologies, 2019, 109: 250-266. DOI: 10.1016/j.
trc.2019.10.015.
[3] LIANG Y, ZHAO Z, ZHANG X. Modeling taxi
cruising time based on multi-source data: A case study in
Shanghai[J]. Transportation, 2022, 11(9): 1-30. DOI:
10.1007/s11116-022-10348-y.
[4] ZHANG D, SUN L, LI B, et al. Understanding taxi
service strategies from taxi GPS traces[J]. IEEE
Transactions on Intelligent Transportation Systems,
2015, 16(1): 123-135. DOI:10.1109/TITS.2014.2328231.
[5] JI Y, DU Y, LIU Y, et al. Empirical behavioral study
of airport-serving taxi drivers using automatic vehicle
location data[J]. Journal of Urban Planning and
Development, 2017, 143(1): 4016026. DOI:10.1061/
(ASCE)UP.1943-5444.0000353.
[6] YAZICI M A, KAMGA C, SINGHAL A. Modeling taxi
drivers' decisions for improving airport ground access:
John F. Kennedy airport case[J]. Transportation
Research Part A: Policy and Practice, 2016, 91: 48-60.
DOI:10.1016/j.tra.2016.06.004.
[7] QIN G, LI T, YU B, et al. Mining factors affecting taxi
drivers' incomes using GPS trajectories[J]. Transportation
Research Part C: Emerging Technologies, 2017, 79: 103-
118. DOI:10.1016/j.trc.2017.03.013.
[8] 周悦, 江欣国, 付川云, 等. 基于混合Logit模型的出租车超速者运营因素分析[J]. 交通运输系统工程与信息, 2021, 21(3): 229-236. DOI: 10.16097/ j.cnki.1009-
6744.2021.03.029. [ZHOU Y, JIANG X G, FU C Y,
et al. Operational factors analysis for taxi speeders
using mixed Logit model[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2021, 21(3): 229-236. DOI: 10.16097/ j.
cnki.1009-6744.2021.03.029.]
[9] DEMISSIE M G, KATTAN L, PHITHAKKITNUKOON S,
et al. Modeling location choice of taxi drivers for
passenger pickup using GPS data[J]. IEEE Intelligent
Transportation Systems Magazine, 2021, 13(1): 70- 90.
DOI:10.1109/MITS.2020.3014099.
[10] 鞠炜奇, 杨家文, 林雄斌. 城市出租车空载率时空特征及其影响因素研究: 以深圳市为例[J]. 规划师, 2015,
31(S2): 257-262. DOI: 10.3969/j.issn.1006-0022.2015.
z2.050. [JU W Q, YANG J W, LIN X B. Research on the
space-time characteristics and influence factors of taxi
empty-loading ratio: Shenzhen example[J]. Planners,
2015, 31(S2): 257-262. DOI: 10. 3969/ j.issn. 1006-
0022.2015.z2.050.]
[11] GAO Y, XU P, LU L, et al. Visualization of taxi drivers'
income and mobility intelligence[C]//Advances in Visual
Computing-8th International Symposium (ISVC 2012).
Springer, Berlin, Heidelberg, 2012: 275-284. DOI:
10.1007/978-3-642-33191-6_27.
[12] HU B, XIA X, SHEN X, et al. Analyses of the imbalance
of urban taxis' high-quality customers based on Didi
trajectory data[J]. Journal of Advanced Transportation,
2019. DOI:10.1155/2019/3689389.
[13] LIU L, WU C, ZHANG H, et al. Research on taxi
driverss' passenger hotspot selecting patterns based on
GPS data: A case study in Wuhan[C]//2017 4th
International Conference on Transportation Information
and Safety(ICTIS). IEEE, Piscataway, NJ, 2017: 432-
441. DOI:10.1109/ICTIS.2017.8047802.
[14] ZONG F, ZHANG H, ZHU X, et al. Understanding
taxi driverss' multi-day cruising patterns[J]. Promet-Traffic & Transportation, 2015, 27(6): 467- 476. DOI:
10.7307/ptt.v27i6.1641.
[15] ZHENG Z, RASOULI S, TIMMERMANS H. Modeling
taxi driver search behavior under uncertainty[J]. Travel
Behaviour and Society, 2021, 22: 207-218. DOI:10.1016/
j.tbs.2020.09.008.
[16] LIU L, ANDRIS C, RATTI C. Uncovering cabdrivers'
behavior patterns from their digital traces[J]. Computers,
Environment and Urban Systems, 2010, 34(6): 541-548.
DOI:10.1016/j.compenvurbsys.2010.07.004.
[17] 邱端昇, 邬群勇, 刘萌, 等. 一种基于出租车轨迹数据的优质客源评价模型及实证研究[J]. 福州大学学报(自然科学版), 2018, 46(2): 199-203. DOI: 10.7631/
issn.1000-2243.16423. [QIU D S, WU Q Y, LIU M,
et al. A model of high quality passenger based on taxi
trajectory and case verification[J]. Journal of Fuzhou
University(Natural Science), 2018, 46(2): 199-203. DOI:
10.7631/issn.1000-2243.16423.]
[18] 刘丽, 张丰, 杜震洪, 等. 基于深圳市出租车轨迹数据的高效益寻客策略研究[J]. 浙江大学学报(理学版), 2018, 45(1): 82-91. DOI: 10. 3785/ j.issn. 1008-
9497.2018.01.013. [LIU L, ZHANG F, DU Z H, et al.
The analysis of high profitable strategy for seeking
passengers based on taxi GPS trajectory data of
Shenzhen city[J]. Journal of Zhejiang University(Science
Edition), 2018, 45(1): 82-91. DOI: 10.3785/j.issn.1008-
9497.2018.01.013.]
[19] BREIMAN L. Random forests[J]. Machine Learning,
2001, 45(1): 5-32. DOI:10.1023/A:1010933404324.
[20] CRAWFORD V P, MENG J. New York City cab drivers'
labor supply revisited: Reference-dependent preferences
with rational-expectations targets for hours and income
[J]. American Economic Review, 2011, 101(5): 1912-
1932. DOI:10.1257/aer.101.5.1912.
|