[1] LIZBETIN J, BARTUSKA L. The influence of human factor on congestion formation on urban roads[J]. Procedia engineering, 2017, 187: 206-211.
[2] RAHMAN M M, NAJAF P, FIELDS M G, et al. Traffic congestion and its urban scale factors: Empirical evidence from American urban areas[J]. International Journal of Sustainable Transportation, 2022, 16(5): 406-421.
[3] ZHOU Y, MAO S, ZHAO H, et al. How rainfalls influence urban traffic congestion and its associated economic losses at present and in future: taking cities in the Beijing-Tianjin-Hebei region, China for example?[J]. Theoretical and Applied Climatology, 2022, 150(1-2):537-550.
[4] ZHANG M, LIU Y, XIAO Y, et al. Vulnerability and resilience of urban traffic to precipitation in China[J]. International journal of environmental research and public health, 2021, 18(23): 12342.
[5] SUN C, LU J. The Relative Roles of Socioeconomic Factors and Governance Policies in Urban Traffic Congestion: A Global Perspective[J]. Land, 2022, 11(10): 1616.
[6] MOYANO A, STEPNIAK M, MOYA-GóMEZ B, et al. Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods[J]. Transportation, 2021, 48(6): 3301-3324.
[7] 胡立伟, 杨锦青, 何越人, 等. 基于改进 BP 神经网络的城市交通拥塞环境下车辆运行风险识别研究[J]. 公路交通科技, 2019, 36(10): 105-113. [HU L W, YANG J Q, HE Y R, et al. Study on Vehicle Operational Risk Identification in Urban Traffic Congestion Based on Improved BP Neural Network[J]. Journal of Highway and Transportation Research and Development, 2019, 36(10):105-113.]
[8] 孙建平, 郭继孚, 张溪, 等. 基于速度变化的偶发性交通拥堵时空分布特性研究[J]. 交通运输系统工程与信息, 2019, 19(2): 196-201. [SUN J P, GUO J F, ZHANG X, et al. Spatial and Temporal Distribution of Occasional Congestion Based on Speed Variation[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2):196-201.]
[9] 韦清波, 何兆成, 郑喜双, 等. 考虑多因素的城市道路交通拥堵指数预测研究[J]. 交通运输系统工程与信息, 2017, 17(1): 74-81. [WEI Q B, HE Z C, ZHENG X S, et al. Prediction of Urban Traffic Performance Index Considering Multiple Factors [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1):74-81.]
[10] 王晓旭, 王丽珍, 王家龙.交通数据的时空并置模糊拥堵模式挖掘[J].清华大学学报(自然科学版),2020,60(8):683-692. [WANG X X, WANG L Z, WANG J L, et al. Mining spatio-temporal co-location fuzzy congestion patterns from traffic datasets[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8):683-692.]
[11] 张光南, 钟俏婷, 杨清玄. 交通违法事故时空分布特征及其影响因素——以广州市为例[J]. 交通运输系统工程与信息, 2019, 19(3): 208-214. [ZHANG G N, ZHONG Q T, YANG Q X. Temporal-spatial Characteristics and Influencing Factors of At-fault Traffic Crashes:A Case Study in Guangzhou [J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3):208-214.]
[12] ANDREO B, GOLDSCHEIDER N, VADILLO I, et al. Karst groundwater protection: First application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain) [J]. Science of the Total Environment. 2006,357(1-3):54-73.
[13] WANG Z, HUA P, LI R, et al. Concentration decline in response to source shift of trace metals in Elbe River, Germany: a long-term trend analysis during 1998–2016[J]. Environmental pollution, 2019, 250: 511-519.
[14] SU X Q, AN J L, ZHANG Y X, et al. Prediction of ozone hourly concentrations by support vector machine and kernel extreme learning machine using wavelet transformation and partial least squares methods[J]. Atmospheric Pollution Research, 2020, 11(6):51-60.
[15] YAO Y, HE C, LI S, et al. Properties of particulate matter and gaseous pollutants in Shandong, China: Daily fluctuation, influencing factors, and spatiotemporal distribution[J]. Science of The Total Environment, 2019, 660: 384-394.
[16] 陈佳木, 吴志华, 刘文浩, 等. 湖南水口山多金属矿区废石堆重金属污染评价及赋存形态分析[J]. 地球科学, 2021, 46(11): 4127-4139. [CHEN J M, WU Z H, LIU W H. Heavy Metal Pollution Evaluation and Species Analysis of Waste Rock Piles in Shuikoushan, Hunan Province [J]. Earth Science, 2021, 46(11):4127-4139.]
[17] WANG Z, SHEN Q, HUA P, et al. Characterizing the anthropogenic-induced trace elements in an urban aquatic environment: A source apportionment and risk assessment with uncertainty consideration[J]. Journal of Environmental Management, 2020, 275: 111288.
[18] DONG L, ZHANG J. Predicting polycyclic aromatic hydrocarbons in surface water by a multiscale feature extraction-based deep learning approach[J]. Science of The Total Environment, 2021, 799: 149509.
[19] BROWN S G, EBERLY S, PAATERO P, et al. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results[J]. Science of the Total Environment, 2015, 518: 626-635.
|