交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (3): 300-310.DOI: 10.16097/j.cnki.1009-6744.2023.03.031

• 系统工程理论与方法 • 上一篇    下一篇

城市交通拥塞因子时空变化特征及源解析研究

赵雪亭,胡立伟*   

  1. 昆明理工大学,交通工程学院,昆明650500
  • 收稿日期:2023-04-05 修回日期:2023-04-25 接受日期:2023-04-28 出版日期:2023-06-25 发布日期:2023-06-23
  • 作者简介:赵雪亭(1997-),男,山西忻州人,博士生
  • 基金资助:
    国家自然科学基金 (42277476,61863019)

Spatial and Temporal Variation Characteristics of Urban Traffic Congestion Factors and Source Analysis

ZHAO Xue-ting, HU Li-wei*   

  1. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2023-04-05 Revised:2023-04-25 Accepted:2023-04-28 Online:2023-06-25 Published:2023-06-23
  • Supported by:
    National Natural Science Foundation of China (42277476,61863019)

摘要: 交通拥塞因子是造成“点-线-面”三级城市交通拥塞效应的重要源。为深入探究城市交通拥塞因子的时空变化特征和影响程度,本文引入用于地质和生态风险评价的相关方法。首先,基于“源-路径-目标”模型,综合考虑城市交通拥塞多变综合复杂性,深入剖析建立城市交通拥塞评价影响指标体系;其次,采用Mann-Kendall 趋势检验法评估不同交通拥塞因子的时空变化趋势和突变点,利用小波分析探究周期性变化规律;改进内梅罗污染指数法对交通拥塞因子的特征及风险程度进行评估;最后,采用person相关性分析和正定矩阵因子分解(PMF)模型分析其主要来源,评估结果的不确定性。结果表明:超车、违反交通规则、随意变换车道、停车、违法违规占用道路、不良天气状况、突发交通事故7个因子的大小变化较为明显,变异系数均超过40%;城市交通拥塞程度因子Ʃ18Bi在1月份的早、午、晚高峰最大(11.23),3月份达到最低(8.12)。城市交通拥塞整体呈现晚高峰>早高峰>中高峰的时间变化特征,且存在8a(第一主周期)和4a(第二主周期)2个周期时间变化。内梅罗污染指数法得到的结果以中等及以上程度交通拥塞为主。研究结果可为城市交通拥塞节点治理提供科学依据。

关键词: 城市交通, 风险评价模型, 源解析, 城市交通拥塞, 时空变化特征, 不确定性分析

Abstract: The traffic congestion factor is an important source of urban traffic congestion effect at the "point-line surface" level. In order to investigate the spatial and temporal characteristics of urban traffic congestion factors and their influence degree, this paper introduces the relevant methods for geological and ecological risk evaluation. Firstly, based on the "source-path-target" model, the multivariate and comprehensive complexity of urban traffic congestion is considered, and the impact index system of urban traffic congestion evaluation is analyzed in depth. to explore the law of periodic changes; improve the Nemero pollution index method to assess the characteristics and risk degree of traffic congestion factors; finally, use person correlation analysis and positive definite matrix factor decomposition (PMF) model to analyze their main sources and assess the uncertainty of the results. The results showed that the magnitude of seven factors, namely, overtaking, traffic rule violation, random lane change, parking, illegal and illegal road occupation, adverse weather conditions, and sudden traffic accidents, varied more significantly, with coefficients of variation exceeding 40%; the urban traffic congestion degree factor Ʃ18Bi was the largest in the morning, afternoon, and evening peaks in January (11.23) and reached the lowest in March ( 8.12). The overall urban traffic congestion shows a time-varying characteristic of evening peak > morning peak > mid-peak, and there are 2 cycles of time variation of 8a (first main cycle) and 4a (second main cycle). The results obtained by the Nemero pollution index method are dominated by moderate and above traffic congestion. The results of the study can provide a scientific basis for urban traffic congestion node management.

Key words: urban traffic, risk assessment model, source analysis, urban traffic congestion, spatiotemporal variation characteristics, uncertainty analysis

中图分类号: