[1] CHEN D J, AHN S Y. Variable speed limit control for severe non-recurrent freeway bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2006, 14(3): 213-228.
[2] 李志斌. 快速道路可变限速控制技术[D]. 南京:东南大学, 2014. [LI Z B. Variable speed limit control technique on expressway[D]. Nanjing: Southeast University, 2014.]
[3] SORIGUERA F, TORNE J M, Rosas D. Assessment of dynamic speed limit management on metropolitan freeways[J]. Journal of Transportation Engineering, 2013, 17(1), 78-90.
[4] GHODS H, FU L, KIAN A R. An efficient optimization approach to real-time coordinated and integrated freeway traffic control[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 873-884.
[5] CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M. Local feedback-based mainstream traffic flow control on motorways using variable speed limits [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1261-1276.
[6] LI Z B, LIU P, XU C C, et al. Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3204-3217.
[7] ZHU F, UKKUSURI S V. Accounting for dynamic speed limit control in a stochastic traffic environment: a reinforcement learning approach[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 30-47.
[8] 段荟, 刘攀, 李志斌, 等. 基于强化学习的汇流瓶颈区可变限速策略研究[J]. 交通运输系统工程与信息, 2015, 15(1): 55-61. [DUAN H, LIU P, LI Z B, et al. Variable speed limit control at freeway merge bottlenecks based on reinforcement learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 15(1): 55-61.]
[9] WU Y K, TAN H C, RAN B. Differential variable speed limits control for freeway recurrent bottlenecks via deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 117(4): 102649.
[10] KE Z M, LI Z B, CAO Z J H, et al. Enhancing transferability of deep reinforcement learning-based variable speed limit control using transfer learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 4684-4695.
[11] VATANI R N, CETIN M. Dueling double deep Q network for improving freeway lane reduction bottlenecks throughput via variable speed limit control[C]// Proceedings of the 99th Annual Meeting of the Transportation Research Board. Washington, 2020: 1-19.
[12] YU H Y, IANG R, HE Z B, et al. Automated vehicle-involved traffic flow studies: a survey of assumptions, models, speculations, and perspectives[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103101.
[13] LI Y, PAN B, XING L, et al. Developing dynamic speed limit strategies for mixed traffic flow to reduce collision risks at freeway bottlenecks[J]. Accident Analysis & Prevention, 2022, 175: 106781.
[14] YU M, FAn W D. Optimal variable speed limit control in connected autonomous vehicle environment for relieving freeway congestion[J]. Journal of Transportation Engineering, Part A: Systems, 2019, 145(4): 04019007.
[15] HAN L, ZHANG L, GUO W A. Optimal differential variable speed limit control in a connected and autonomous vehicle environment for freeway off-ramp bottlenecks[J]. Journal of Transportation Engineering, Part A: Systems, 2023, 149(4): 04023009.
[16] LI D , ZHAO Y , PRAKASH R , et al. A hybrid approach for variable speed limit implementation and application to mixed traffic conditions with connected autonomous vehicles[J]. IET Intelligent Transport Systems, 2018, 12(5): 327-334.
[17] 何勇, 唐琤琤. 道路交通安全技术[M]. 北京: 人民交通出版社, 2008. [HE Y, TANG Z Z. Road traffic safety technology[M]. Beijing: China Communications Press, 2008.]
[18] WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]. New York: Proceedings of the 33th International Conference on International Conference on Machine Learning. 2016.
[19] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.
[20] 姚志洪, 顾秋凡, 徐桃让, 等. 考虑时延的智能网联汽车混合交通流稳定性分析[J]. 控制与决策, 2022, 37(6): 1505-1512. [YAO Z H, GU Q F, XU T R, et al. Stability of mixed traffic flow with intelligent connected vehicles considering time delay[J]. Control and Decision, 2022, 37(6): 1505-1512.]
[21] MILANES V, SHLADOVER SE. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C Emerging Technologies, 2014, 48: 261-279.
[22] MILANES V, SHLADOVER SE, Spring J, et al. Cooperative adaptive cruise control in real traffic situations. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 294-305.
[23] LIN S, SCHUTTER B D, HRGYI A, et al. On a spatiotemporally discrete urban traffic model[J]. IET Intelligent Transport Systems, 2014, 8(3): 219-231.
[24] NGUYEN V. Bayesian optimization for accelerating hyper-parameter tuning[C]. Sardinia: Proceedings of the 11th IEEE SecondInternational Conference on Artificial Intelligence and Knowledge Engineering, 2019.
[25] PAN T L, GUO R Z, LAM W H K. Integrated optimal control strategies for freeway traffic mixed with connected automated
vehicles: a model-based reinforcement learning approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 123:
102987.
|