交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (4): 102-110.DOI: 10.16097/j.cnki.1009-6744.2023.04.011

• 智能交通系统与信息技术 • 上一篇    下一篇

考虑车辆历史状态数据的加速车道汇入策略研究

郭应时,谷梦路,王畅*,苏彦奇,付锐,袁伟   

  1. 长安大学,汽车学院,西安 710064
  • 收稿日期:2023-03-28 修回日期:2023-05-06 接受日期:2023-05-08 出版日期:2023-08-25 发布日期:2023-08-21
  • 作者简介:郭应时(1964- ),男,辽宁凌海人,教授,博士
  • 基金资助:
    国家自然科学基金(51908054);国家重点研发计划 (2019YFB1600500);中央高校基本科研业务费专项资金(CHD300102220202)

Merging Decisions from Acceleration Lanes Considering Historical Vehicle Operating State Data

GUO Ying-shi, GU Meng-lu, WANG Chang*, SU Yan-qi, FU Rui, YUAN Wei   

  1. School of Automobile, Chang'an University, Xi'an 710064, China
  • Received:2023-03-28 Revised:2023-05-06 Accepted:2023-05-08 Online:2023-08-25 Published:2023-08-21
  • Supported by:
    National Natural Science Foundation of China (51908054);National Key Research and Development Program of China (2019YFB1600500);Fundamental Research Funds for the Central Universities (CHD300102220202)

摘要: 为研究汇入场景中车辆历史状态数据对高速公路加速车道汇入车辆汇入决策行为的影响,本文结合GentleBoost (Gentle adaptive Boosting)集成学习算法框架,提出考虑历史时间窗口的加速车道汇入决策模型。首先,使用高精度摄像头和毫米波雷达组成路侧数据采集平台,采集国内典型高速公路加速车道车辆汇入行为数据。其次,搭建汇入决策模型,基于汇入场景车辆当前时刻状态信息和历史状态信息,考虑剩余加速车道长度的影响,建立GentleBoost汇入决策模型。最后,通过SUMO (Simulation of Urban Mobility)仿真平台和MATLAB算法控制平台搭建智能网联高速公路加速车道汇入仿真测试环境,测试不同主线交通流密度下的汇入决策效果。研究结果表明,随着车辆历史状态数据时间窗口的增大,汇入决策模型的准确率先增大后趋于稳定。在考虑汇入场景车辆历史状态信息的时间窗口为1.7 s时,GentleBoost模型得到了最大的汇入决策识别准确率,其中识别“汇入”事件的准确率为98.9%,识别“不汇入”事件的准确率为97.4%。微观仿真结果表明,相比SUMO中的LC2013换道模型,考虑车辆历史状态信息的GentleBoost汇入决策模型获得了更高的汇入成功率和更大的通过平均速度。

关键词: 智能交通, 车辆历史状态数据, GentleBoost, 汇入决策模型, 加速车道, SUMO仿真验证

Abstract: To investigate the impact of the historical vehicle operating state data on merging decisions of the merging vehicle in a highway acceleration lane, a merging decision model for the merging vehicle considering the vehicle historical operating state data in a time window was proposed by combining with GentleBoost (Gentle adaptive Boosting) ensemble learning algorithm. First, a roadside data acquisition platform was designed using high�definition cameras and millimeter radar devices, and real traffic interaction data at a typical merging zone with an acceleration lane in China were collected. Second, a merging decision model based on a GentleBoost algorithm considering current and historical vehicle operating state data in the merging scenario, and the impact of the remaining distance in the acceleration lane was proposed. Finally, a microscopic simulation merging scenario was built based on SUMO (Simulation of urban mobility) and MATLAB platforms, to test the GentleBoost merging decision model in an intelligent connected environment under different traffic flow conditions. The results showed that, as the length of the time window increased, the overall recognition accuracy of the model first increased and finally tended to be stable. The merging decision model reached its best performance when the time window length was 1.7 s. And the recognition accuracy was 98.9% for "Merge" events and 97.4% for "Non-merge" events. The simulation results showed that, compared to the LC2013 model embedded in SUMO, the proposed GentleBoost model considering the historical data obtained a higher merging success rate and a larger average traveling speed in the merging control zone.

Key words: intelligent transportation, vehicle historical state data, GentleBoost, merging decision model, acceleration lane, SUMO simulation

中图分类号: