[1] MORIDPOUR S, SARVI M, ROSE G. Lane changing
models: A critical review[J]. Transportation Letters,
2010, 2(3): 157-173.
[2] 中华人民共和国公安部交通管理局. 中华人民共和国道路交通事故统计年报(2020 年度)[R]. 无锡: 公安部交通管理局, 2021. [Traffic Administration Bureau of
The Ministry of Public Security of the Pepole's Republic
of China. Annual report on road traffic accident statistics
of the People's Republic of China[R]. Wuxi: Traffic
Administration Bureau of the Ministry of Public Security
2021]
[3] LI L, GAN J, ZHOU K, et al. A novel lane-changing
model of connected and automated vehicles: Using the
safety potential field theory[J]. Physica A: Statistical
Mechanics and its Applications, 2020, 559: 125039.
[4] WANG C, SUN Q, FU R, et al. Lane change warning
threshold based on driver perception characteristics
[J]. Accident Analysis & Prevention, 2018, 117: 164-
174.
[5] ALI Y, ZHENG Z, HAQUE MD M. Connectivity's impact
on mandatory lane-changing behaviour: Evidences from a
driving simulator study[J]. Transportation Research Part
C: Emerging Technologies, 2018, 93: 292-309.
[6] 叶颖俊, 倪颖, 孙剑. 高密度瓶颈交通流主动-回应汇入行为定义与建模[J]. 中国公路学报, 2022, 35(8):
278-290. [YE Y J, NI Y, SUN J. Defining and modeling
active-responsive merging behavior at high-density
expressway on-ramp bottlenecks[J]. China Journal of
Highway and Transport, 2022, 35(8): 278-290.]
[7] QI W, WANG W, SHEN B, et al. A modified post
encroachment time model of urban road merging area
based on lane-change characteristics[J]. IEEE Access,
2020, 8: 72835-72846.
[8] 赵建东, 贺晓宇, 余智鑫, 等. 多网联范围下的智能网联车换道决策组合模型研究[J]. 交通运输系统工程与信息, 2023, 23(1): 77-85. [ZHAO J D, HE X Y, YU
Z X, et al. A combination model for connected and
autonomous vehicles lane-changing decision-making
under multi-connectivity range[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(1): 77-85.]
[9] 张洪加, 郭应时, 高松, 等. 网联与非网联环境下驾驶人换道意图识别研究[J/OL]. 中国公路学报,(2023-01-02) [2023-03-23]. http: //kns. cnki. net/
kcms/ detail/ 61. 1313. U. 20221230. 1243. 003. html.
[ZHANG H J, GUO Y S, GAO S, et al. Research on
driver lane- changing intention recognition in connected
and non- connected environments[J]. China Journal of
Highway and Transport, (2023- 01- 02) [2023- 03- 23].
http: //kns. cnki. net/ kcms/ detail/61.1313.U. 20221230.
1243. 003. html.]
[10] CHEEL O, SCHWARZ L, NAVAB N, et al. Situation
assessment for planning lane changes: Combining
recurrent models and prediction[C]. 2018 IEEE
International Conference on Robotics and Automation
(ICRA), Brisbane, QLD: IEEE, 2018.
[11] 邬岚, 赵乐, 李根. 基于方差异质性随机参数模型的汇合行为分析[J]. 吉林大学学报(工学版), 2022(6): 1-7.
[WU L, ZHAO L, LI G. Analysis of merging behavior
based on random parameter model with heterogeneity in
variances[J]. Journal of Jilin University (Engineering and
Technology), 2022(6): 1-7.]
[12] CANTISANI G. Results of Micro-simulation model for
exploring drivers' behavior on acceleration lanes[J].
European Transport/Trasporti Europei, 2020(77): 1-10.
[13] DOSHI A, TRIVEDI M. A comparative exploration of eye
gaze and head motion cues for lane change intent
prediction[C]. 2008 IEEE Intelligent Vehicles
Symposium, Eindhoven, Netherlands: IEEE, 2008.
[14] SIMSEK M, KANTARCI B, ZHANG Y. Detecting fake
mobile crowdsensing tasks: Ensemble methods under
limited data[J]. IEEE Vehicular Technology Magazine,
2020, 15(3): 86-94.
[15] KRAUSS S, WAGNER P, GAWRON C. Metastable
states in a microscopic model of traf fic flow[J]. Physical
Review E, 1997, 55(5): 5597-5602.
|