[1] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. [ZHAO Y Y, XIA L,
JIANG X G. Short-term metro passenger flow prediction
based on EMD-LSTM[J]. Journal of Traffic and
Transportation Engineering, 2020, 20(4): 194-204.]
[2] 施俊庆, 李睿, 程明慧, 等. 基于动态时空神经网络模型的地铁客流预测[J]. 交通运输系统工程与信息,
2023, 23(2): 139-147. [SHI J Q, LI R, CHENG M H,
et al. Metro passenger flow prediction based on dynamic
spatio-temporal neural network model[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(2): 139-147.]
[3] 刘晓磊, 段征宇, 余庆, 等. 基于图卷积循环神经网络的城市轨道客流预测[J]. 华南理工大学学报(自然科学版), 2022, 50(3): 21-27. [LIU X L, DUAN Z Y, YU Q,
et al. Passenger flow forecast of urban rail transit based
on graph convolution and recurrent neural network[J].
Journal of South China University of Technology (Natural
Science Edition), 2022, 50(3): 21-27.]
[4] ZHANG J, CHEN F, GUO Y, et al. Multi-graph
convolutional network for short-term passenger flow
forecasting in urban rail transit[J]. IET Intelligent
Transport Systems, 2020, 14(10): 1210-1217.
[5] BAO J, KANG J, YANG Z, et al. Forecasting networkwide multi-step metro ridership with an attention-weighted multi-view graph to sequence learning approach
[J]. Expert Systems with Applications, 2022, 210:
118475.
[6] 陈俊彦, 黄雪锋, 韦俊宇, 等. 基于多图时空注意力的轨道交通客流预测模型[J]. 郑州大学学报(理学版),
2023, 55(4): 39-45. [CHEN J Y, HUANG X F, WEI J Y,
et al. A prediction method of rail transit passenger flow
based on multi-graph spatial and temporal attention[J].
Journal of Zhengzhou University (Natural Science
Edition), 2023, 55(4): 39-45.]
[7] LIU L, CHEN J, WU H, et al. Physical-virtual
collaboration modeling for intra-and inter-station metro
ridership prediction[J]. IEEE Transactions on Intelligent
Transportation Systems, 2020, 23(4): 3377-3391.
[8] LIANG Y B, DING F Y, HUANG G, et al. Deep trip
generation with graph neural networks for bike sharing
system expansion[J]. Transportation Research Part C:
Emerging Technologies, 2023, 154: 104241.
[9] WU Y, SHI K, CHEN Z, et al. Developing improved timeseries DMSP-OLS-like data (1992-2019) in China by
integrating DMSP-OLS and SNPP-VIIRS[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2021,
60: 1-14.
|