[1] 王芳, 白傑, 杨丽平, 等. 探索飞行汽车通勤新模式的城市空中交通发展分析[J]. 北京理工大学学报, 2023,
43(7): 665-675. [WANG F, BAI J, YANG L P, et al. An
overview on development of urban air traffic with a new
mode of flying car commuting[J]. Transactions of Beijing
Institute of Technology, 2023, 43(7): 665-675.]
[2] 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 82-106. [ZHANG
H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air
mobility management: review[J]. Acta Aeronautica et
Astronautica Sinica, 2021, 42(7): 82-106.]
[3] MOHAMED SALLEH M F B, CHI W C, WANG Z K,
et al. Preliminary concept of adaptive urban airspace
management for unmanned aircraft operations[M]
Kissimmee: 2018 AIAA Information Systems-AIAAInfotech@ Aerospace, 2018.
[4] BOSSON C, LAUDERDALE T A. Simulation evaluations
of an autonomous urban air mobility network
management and separation service[C] Atlanta: AIAA.
2018 Aviation Technology, Integration, and Operations
Conference, 2018.
[5] 蒋丽, 杨露, 梁昌勇, 等. 基于无人机的高层住宅最后“一百米”配送优化[J]. 交通运输系统工程与信息,
2022, 22(4): 236-245. [JIANG L, YANG L, LIANG C
Y, et al. Optimization of final "100 meters" drone
delivery in high-rise residential buildings[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(4): 236-245.]
[6] PRADEEP P, LAUDERDALE T A, CHATTERJI G B,
et al. Wind-optimal trajectories for multirotor eVTOL
aircraft on UAM missions[C]//Aiaa Aviation 2020 Forum,
2020.
[7] 张洪海, 李翰, 刘皞, 等. 城市区域物流无人机路径规划[J]. 交通运输系统工程与信息, 2020, 20(6): 22-29.
[ZHANG H H, LI H, LIU H, et al. Path planning for
logistics unmanned aerial vehicle in urban area[J].
Journal of Transportation Systems Engineering and
Information Technology, 2020, 20(6): 22-29.]
[8] ZHU G, WEI P. Pre-departure planning for urban air
mobility flights with dynamic airspace reservation[C]//
Dallas: AIAA Aviation 2019 Forum, 2019.
[9] 郝鹏. 面向 UAM 系统的 eVTOL 飞行器避障路径规划算法研究[D]. 成都: 西华大学, 2022. [HAO P. Research
on obstacle avoidance path planning algorithm for
eVTOL aircraft in UAM system[D]. Chengdu: Xihua
University, 2022.]
[10] 刘东来, 江波, 郑远, 等. 城市空中交通空域架构及轨迹规划方法[J]. 科技和产业, 2023, 23(8): 268- 273.
[LIU D L, JIANG B, ZHENG Y, et al. Urban air mobility
airspace architecture and trajectory planning method[J].
Science Technology and Industry, 2023, 23(8): 268-273.]
[11] ZHOU H, ZHANG Y F, HU X B. Improved ripple
spreading algorithms for trajectory-based free routing
optimization in dynamic airspace[J]. Available at SSRN,
2023: 4385801.
[12] QUAN Q, LI M, FU R. Sky highway design for dense
traffic[J]. IFAC-PapersOnLine, 2021, 54(2): 140-145.
[13] DUVALL T, GREEN A, LANGSTAFF M, et al. Air-mobility solutions: What they'll need to take off[J].
McKinsey Capital Projects & Infrastructure, 2019, 20(5):
2020.
[14] JOHNSON W. Helicopter optimal descent and landing
after power loss[R]. Report No: NASA TM-73244, 1977.
[15] PRADEEP P, WEI P. Energy-efficient arrival with RTA
constraint for multirotor evtol in urban air mobility[J].
Journal of Aerospace Information Systems, 2019, 16(7):
263-277.
[16] SNIEDOVICH M. Dijkstra's algorithm revisited. The
dynamic programming connexion[J]. Control and
Cybernetics, 2006, 35(3): 599-620.
[17] SMED J, HAKONEN H. Algorithms and networking for
computer games[M]. Hoboken: Wiley Online Library,
2006.
[18] HU X B, ZHANG M K, ZHANG Q, et al. Co-evolutionary
path optimization by ripple-spreading algorithm[J].
Transportation Research Part B: Methodological, 2017,
106: 411-432.
[19] 解鑫, 胡小兵, 周航. 动态路网环境下的路径优化算法研究[J/OL]. 系统仿真学报, (2023-09-07) [2023-
12-31]. https://doi.org/10.16182/j.issn1004731x.joss.23-
0779. [XIE X, HU X B, ZHOU H. Research on path
optimization algorithm in dynamic routing network
environment[J/OL]. Journal of System Simulation,
(2023-09-07) [2023-12-31]. https://doi.org/10.16182/j.
issn1004731x.joss.23-0779.]
[20] SWAMINATHAN N, REDDY S R P, RAJASHEKARA
K, et al. Flying cars and eVTOLs: Technology
advancements, powertrain architectures, and design[J].
IEEE Transactions on Transportation Electrification,
2022, 8(4): 4105-4117.
[21] HU X B, WANG M, LEESON M S, et al. Deterministic
agent-based path optimization by mimicking the
spreading of ripples[J]. Evolutionary Computation, 2016,
24(2): 319-346.
|