[1] BRITTO R, DRESNER M, VOLTESs A. The impact of
flight delays on passenger demand and societal welfare
[J]. Transportation Research Part E, 2014, 48(2): 460-
469.
[2] RYERSON M S, HANSEN M, BONN J. Time to burn:
Flight delay, terminal efficiency, and fuel consumption in
the National Airspace System[J]. Transportation
Research Part A: Policy and Practice, 2014, 69(11): 286-
298.
[3] 朱江, 黄建伟, 亓洋洋, 等. 基于超越对数成本函数的航空公司延误成本测算[J]. 物流科技, 2020, 43(12):
35- 38, 45. [ZHU J, HUANG J W, QI Y Y, et al.
Calculation of airline delay cost based on translog cost
function[J]. Logistics Sci-Tech, 2020, 43(12): 35-38, 45.] 、[4] 王春政, 胡明华, 杨磊, 等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42(7): 452-465. [WANG
C Z, HU M H, YANG L, et al. Airport network delay
prediction based on Agent model[J]. Acta Aeronautica et
Astronautica Sinica, 2021, 42(7): 452-465.]
[5] WANG C, HU M, YANG L, et al. Prediction of air
traffic delays: An agent-based model introducing refined
parameter estimation methods[J]. PLoS ONE, 2021, 16
(4): e0249754.
[6] WU C L, LAW K. Modelling the delay propagation effects
of multiple resource connections in an airline network
using a Bayesian network model[J]. Transportation
Research Part E: Logistics and Transportation Review,
2019, 122: 62-77.
[7] YU B, GUO Z, ASIAN S, et al. Flight delay prediction for
commercial air transport: A deep learning approach[J].
Transportation Research, Part E: Logistics and
Transportation Review, 2019, 125(5): 203-221.
[8] 罗赟骞, 陈志杰, 汤锦辉, 等. 采用支持向量机回归
的 航 班 延 误 预 测 研 究 [J]. 交通运输系统工程与信息, 2015, 15(1): 143-149, 172. [LUO Y Q, CHEN Z J,
TANG J H, et al. Flight delay prediction using support
vector machine regression[J]. Journal of Transportation
Systems Engineering and Information Technology, 2015,
15(1): 143-149, 172.]
[9] 吴仁彪, 赵娅倩, 屈景怡, 等. 基于CBAM-CondenseNet
的航班延误波及预测模型[J]. 电子与信息学报, 2021,
43(1): 187-195. [WU R B, ZHAO Y Q, QU J Y, et al.
Flight delay propagation prediction model based on
CBAM-CondenseNet[J]. Journal of Electronics and
Information Technology, 2021, 43(1): 187-195.]
[10] 姜雨, 陈名扬, 袁琪, 等. 基于时空图卷积神经网络的离港航班延误预测[J]. 北京航空航天大学学报, 2023,
49(5): 1044-1052. [JIANG Y, CHEN M Y, YUAN Q,
et al. Convolution neural network based on the space-time map of departure flight delay prediction[J]. Journal
of Beijing University of Aeronautics and Astronautics,
2023, 49(5): 1044-1052.]
[11] 刘晓琳, 郭梦娇, 李卓. 基于自适应注意力图卷积循环网络的航班延误组合预测方法[J/OL]. 北京航空航天大学学报, (2023-02-28)[2023-09-01]. https://doi.org/
10.13700/j.bh.1001-5965.2022.0990. [LIU X L, GUO M
J, LI Z. Flight delay prediction based on attention-based
adaptive graph convolution-Gated Recurrent Unit[J/
OL]. Journal of Beijing University of Aeronautics and
Astronautics, (2023- 02- 28) [2023- 09- 01]. https://doi.
org/10.13700/j.bh.1001-5965.2022.0990.]
[12] 姜雨, 袁琪, 胡志韬, 等. 基于气象因素的机场进离港延误预测[J]. 系统工程与电子技术, 2023, 45(6): 1722-
1731. [JIANG Y, YUAN Q, HU Z T, et al. Airport arrival
and departure delay prediction based on meteorological
factors[J]. Systems Engineering and Electronics, 2023, 45
(6): 1722-1731.]
[13] 中国民用航空局. 2020年民航行业发展统计公报[EB/
OL]. (2022-05-18) [2023-09-01]. http://www.caac.gov.
cn/XXGK/XXGK/TJSJ/202205/t20220518_213297. html.
[Civil Aviation Administration of China. In 2020, the
civil aviation industry development statistical bulletin
[EB/OL]. (2022-05-18) [2023-09-01]. http://www.caac.
gov. cn/XXGK/XXGK/TJSJ/202205/t20220518 _ 213297 .
html.]
[14] 李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述[J]. 计算机工程与应用, 2019, 55(24): 10-19. [LI Z Q, DU J Q,
NIE B, et al. Review of feature selection methods[J].
Computer Engineering and Applications, 2019, 55(24):
10-19.]
[15] 雷欣南, 林乐凡, 肖斌卿, 等. 小微企业违约特征再探索:基于SHAP解释方法的机器学习模型[J/OL]. 中国管理科学, (2022-03-21) [2023-09-01]. https://doi.org/
10.16381/j.cnki.issn1003-207x.2021.0027. [LEI X N,
LIN L F, XIAO B Q, et al. Re-exploration of small and
micro enterprises' default characteristics based on
machine learning models with SHAP[J/OL]. Chinese
Journal of Management Science, (2022-03-21) [2023-
09- 01]. https://doi.org/10.16381/j.cnki.issn1003- 207x.
2021.0027.]
|