交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 297-305.DOI: 10.16097/j.cnki.1009-6744.2025.04.027

• 系统工程理论与方法 • 上一篇    下一篇

考虑燃油消耗异质性的船舶进港效率与能耗协同优化

郭文强,张新宇* ,杨嵩旭   

  1. 大连海事大学,航海学院,辽宁大连116026
  • 收稿日期:2025-05-07 修回日期:2025-05-29 接受日期:2025-06-11 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:郭文强(1995—),男,黑龙江五常人,博士生。
  • 基金资助:
    国家自然科学基金 (52371359)。

Coordinated Optimization of Ship Berthing Efficiency and Energy Consumption Considering Fuel Consumption Heterogeneity

GUO Wenqiang, ZHANG Xinyu*,YANG Songxu   

  1. Navigation College, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2025-05-07 Revised:2025-05-29 Accepted:2025-06-11 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    National Natural Science Foundation of China (52371359)。

摘要: 针对不同类型船舶在进港过程中燃油消耗差异显著,调度效率与能耗优化难以兼顾的问题,本文研究考虑燃油消耗异质性的船舶进港效率与能耗协同优化方法,构建以最小化船舶总进港时间与总燃油消耗为目标的双目标混合整数非线性规划模型,提出一种深度Q网络(DQN)驱动的协同元启发式算法求解模型。算法设计中引入改进的Nawaz-Enscore-Ham启发式方法生成初始调度序列,并构建基于DQN的双种群协作搜索框架以动态调整船舶进港顺序与航速配置。以天津港典型调度实例为背景开展仿真对比实验,结果显示,深度Q网络驱动的协同元启发式算法在目标空间中解的质量与分布性能均优于传统启发式方法。与商业求解器CPLEX相比,该算法在求解效率上实现了指数级提升,其两个目标函数的综合偏差控制在2.04%~12.82%,能够稳定地获得接近最优的高质量近似解。进一步对比分析表明,在考虑燃油效率异质性的条件下,船舶的调度优先级发生明显变化,印证了能耗结构差异对进港组织策略的显著影响。

关键词: 水路运输, 效率和油耗优化, 深度Q网络, 进港船舶, 双种群协作框架

Abstract: To address the significant differences in fuel consumption among various types of vessels during port entry and the challenge of balancing scheduling efficiency with energy optimization, this study investigates a coordinated optimization approach for port entry efficiency and fuel consumption considering the heterogeneity in fuel efficiency. A bi-objective mixed-integer nonlinear programming model is formulated to minimize the total port entry time and the overall fuel consumption of vessels. To solve the model effectively, a cooperative meta-heuristic algorithm driven by a Deep Q-Network (DQN) is proposed. The algorithm incorporates an improved Nawaz-Enscore-Ham (NEH) heuristic to generate initial scheduling sequences and designs a DQN-based dual-population cooperative search framework to adjust vessel entry sequences and speed profiles dynamically. Using a representative scheduling scenario from Tianjin Port, numerical experiments are conducted to validate the performance of the proposed method. The results demonstrate that the DQN-driven cooperative meta-heuristic algorithm outperforms traditional heuristic methods in terms of solution quality and distribution within the objective space. Compared to the commercial solver CPLEX, the proposed algorithm achieves exponential improvements in computational efficiency while maintaining the overall deviation of the two objectives within a range of 2.04% to 12.82%, yielding consistently high-quality approximate solutions. Further comparative analysis reveals that incorporating heterogeneous fuel efficiency significantly alters the scheduling priorities of vessels, underscoring the critical impact of energy consumption structure on port entry organization strategies.

Key words: waterway transportation, efficiency and fuel consumption optimization, deep Q-network, port-arriving ships, bi population cooperative framework

中图分类号: