|
[1]鲁文博,张永,李培坤,等.自适应多视图融合图神经网络地铁客流预测模型[J].交通运输系统工程与信息, 2024, 24(3): 194-203. [LU W B, ZHANG Y, LI P K,
et al. Metro passenger flow prediction model using
adaptive multi-view fusion graph neural network[J].
Journal of Transportation Systems Engineering and
Information Technology, 2024, 24(3): 194-203.]
[2]WU J, LI X, HE D, et al. Learning spatial-temporal
dynamics and interactivity for short-term passenger flow
prediction in urban rail transit[J]. Applied Intelligence,
2023, 53(16): 19785-19806.
[3]YU B, YIN H, ZHU Z. Spatio-temporal graph
convolutional networks: A deep learning framework for
traffic forecasting[J]. arXiv Preprint arXiv: 1709.04875,
2017.
[4]王润祺,郝妍熙,胡华,等.基于时空关联的时空图卷积神经网络城市轨道交通进站客流预测[J].城市轨道交通研究,2024, 27(9): 91-96. [WANG R Q, HAO Y X,
HU H, et al. Inbound passenger flow prediction of spatio
temporal graph convolutional neural network for urban
rail transit based on spatiotemporal correlation[J]. Urban
Mass Transit, 2024, 27(9): 91-96.]
[5]
XIE R, ZHANG H, LI H, et al. High-speed rail passenger
flow prediction based on crossformer and quantile
regression: A deep learning approach assisted by internet
search indices[J]. Measurement, 2025, 242: 116189.
[6]LI L, RAN B, ZHU J, et al. Coupled application of deep
learning model and quantile regression for travel time
and its interval estimation using data in different
dimensions[J]. Applied Soft Computing, 2020, 93:
106387.
[7]JIN X, WANG J, GUO S, et al. Spatial-temporal
uncertainty-aware graph networks for promoting accuracy
and reliability of traffic forecasting[J]. Expert Systems
with Applications, 2024, 238: 122143.
[8]WANG Y, KE S, AN C, et al. A hybrid framework
combining LSTM NN and BNN for short-term traffic flow
prediction and uncertainty quantification[J]. KSCE
Journal of Civil Engineering, 2024, 28(1): 363-374.
[9]
YANG N, ZHANG W, ZHANG J, et al. A method for
remaining useful life prediction and uncertainty
quantification of rolling bearings based on fault feature
gain[J]. IEEE Transactions on Instrumentation and
Measurement, 2025, 74: 3507414.
[10] 周师琦,王俊帆,赖俊升,等.结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法[J].电子与信息学报,2024, 46(12): 4432-4440. [ZHOU S Q, WANG
J F, LAI J S, et al. Multi-view adaptive probabilistic load
forecasting combing Bayesian autoformer network[J].
Journal of Electronics & Information Technology, 2024,
46(12): 4432-4440.]
[11] LUNDBERG S M, LEE S I. A unified approach to
interpreting model predictions[J]. Advances in Neural
Information Processing Systems, 2017, 30: 4768-4777.
[12] WANG J. An intuitive tutorial to Gaussian process
regression[J]. Computing in Science & Engineering,
2023, 25(4): 4-11.
[13] SALINAS D, FLUNKERT V, GASTHAUS J, et al.
DeepAR: Probabilistic forecasting with autoregressive
recurrent
networks[J].
International Journal
of
Forecasting, 2020, 36(3): 1181-1191.
[14] GAL Y, GHAHRAMANI Z. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning[C]//International
Conference on Machine Learning, PMLR, 2016: 1050-1059.
[15] DUAN T, ANAND A, DING D Y, et al. Ngboost: Natural
gradient boosting for probabilistic prediction[C]//
International Conference on Machine Learning, PMLR,
2020: 2690-2700.
|