交通运输系统工程与信息 ›› 2011, Vol. 11 ›› Issue (3): 71-75.

• 系统工程理论与方法 • 上一篇    下一篇

基于协整理论的短时交通流组合预测研究

蓝金辉*1,郭敏2,卢海锋1,肖翔1   

  1. 1. 北京科技大学 自动化学院,北京 100083; 2.北京市公安局 公安交通管理局,北京 100037
  • 收稿日期:2011-01-05 修回日期:2011-03-09 出版日期:2011-06-25 发布日期:2011-07-18
  • 作者简介:蓝金辉(1967-),女,吉林省人,教授,博士
  • 基金资助:

    北京市自然科学基金项目(4102038);北京市科技计划(D07020601400704)

Short-Term Traffic Flow Combination Forecast by Co-integration Theory

LAN Jin-hui1, GUO Min2, LU Hai-feng1, XIAO Xiang1   

  1. 1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Beijing Traffic Management Bureau, Beijing 100037, China
  • Received:2011-01-05 Revised:2011-03-09 Online:2011-06-25 Published:2011-07-18

摘要: 交通流短时预测是智能交通系统中的一个重点问题,预测效果的好坏直接关系到控制和诱导的结果,是实现先进交通管理信息系统的关键技术之一. 本文简要介绍了协整和误差修正模型的概念,利用序列的协整性来进行交通流组合预测模型的有效性验证,并利用误差修正模型提高组合预测模型的稳定性. 我们利用北京市二环路上采集到的交通流数据进行了模型的验证. 研究结果表明,基于协整理论的交通流组合预测模型可以取得很好的预测效果.

关键词: 智能交通, 协整理论, 组合预测模型, 误差修正, 短时交通流预测

Abstract: Short-term traffic flow prediction is a priority issue of intelligent transportation system. The accuracy of the prediction results directly affects the traffic control and management. Therefore, it is the key technology for the advanced traffic management information system. This paper briefly describes the concept of co-integration and error correction model, and then verifies the validity of the combination of traffic flow forecasting model using the co-integration of series. It also improves the stability of the combination forecasting model through the error correction model. The historical and real-time traffic flow data, collected form the Second Ring Road of Beijing, are used to verify the model. The results indicate that the combination model based on the co-integration and error correction model meets the actual traffic flow characteristics well and obtains a better prediction result.

Key words: intelligent transportation, co-integration theory, combination forecasting model, error correction, short-term traffic flow prediction

中图分类号: