交通运输系统工程与信息 ›› 2012, Vol. 12 ›› Issue (4): 149-154.

• 系统工程理论与方法 • 上一篇    下一篇

基于认知启发式规则的行人动力学建模

许奇a,毛保华*a,b,钱堃a,朱宇婷a,梁肖a   

  1. 北京交通大学 a. 城市复杂系统理论与技术教育部重点实验室; b. 中国综合交通研究中心,北京100044
  • 收稿日期:2012-03-17 修回日期:2012-05-04 出版日期:2012-08-25 发布日期:2012-09-07
  • 作者简介:许奇(1982 - ), 男, 云南普洱市人, 博士生.
  • 基金资助:

    国家自然科学基金重点项目(71131001); 国家重点基础研究发展计划项目(2012CB725406); 中央高校基本科研业务费专项资金资助(2012YJS053).

Cognitive Heuristics for Modeling Pedestrian Walking Behavior

XU Qi a, MAO Bao-hua a,b, QIAN Kuna, ZHU Yu-tinga, LIANG Xiaoa   

  1. a. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology;b. Integrated Transportation Research Centre of China, Beijing Jiaotong University, Beijing 100044, China
  • Received:2012-03-17 Revised:2012-05-04 Online:2012-08-25 Published:2012-09-07

摘要:

行人动力学建模的关键是对行人运动方向和速度的选择进行描述.本文构建了基于多层有限状态自动机的行人Agent适应性决策模型;在此基础上,针对行人运动过程中快速决策的特征,通过构建基于认知启发式规则的行人运动行为规则集合,建立了描述行人微观运动行为的动力学模型.通过设计仿真实验并收集数据,对模型的有效性进行了验证.研究结果表明:模拟得到的行人交通流密度-速度关系与实测数据具有较好的一致性,流率-密度关系符合理论计算结果,基本图较好地符合实际观测的行人宏观交通流关系,认为本文提出的行人动力学模型具有交通上的合理性.

关键词: 城市交通, 行人, 交通行为, 认知启发式, 多层有限状态自动机

Abstract:

The challenging issue in pedestrian crowd dynamics modeling is how to tackle the selection mechanism for pedestrian walking direction and step size. Based on hierarchical finite state machines, adaptive decision model for pedestrian agent walking behavior decision making is proposed in this paper. Furthermore, to reveal the characteristics of pedestrian decision-making in pedestrian motion, a set of rules based on cognitive heuristics is formulated to model the pedestrian crowd dynamics. Through designing computational experiments, the simulation data is collected to calibrate and validate the models. The study results show that the pedestrian flow densityvelocity diagram is qualitatively consistent with the field data and flow ratedensity diagram is dovetail into the reported results in the cited works. The proposed pedestrian crowd dynamics is reasonable to describe the pedestrian traffic pattern.

Key words: urban traffic, pedestrian, traffic behaviors, cognitive heuristics, hierarchical finite state machines

中图分类号: