交通运输系统工程与信息 ›› 2014, Vol. 14 ›› Issue (6): 8-14.

• 综合交通运输体系论坛 • 上一篇    下一篇

中国现代交通运输业效率波动性和影响因素研究 ——基于交叉效率DEA 和VAR 模型的分析

吴继贵,叶阿忠*   

  1. 福州大学经济与管理学院,福州350108
  • 收稿日期:2014-06-20 修回日期:2014-08-07 出版日期:2014-12-25 发布日期:2014-12-30
  • 作者简介:吴继贵(1985-),男,福建寿宁人,博士生.
  • 基金资助:

    国家自然科学基金(71171057);教育部高等学校博士点基金(20103514110009);教育部人文社科基金 (10YJA790227,12CJY011).

Efficiency Volatility and Influence Factors of Chinese Modern Transportation Industry Based on the Model of Cross-efficiency DEA and VAR

WU Ji-gui, YE A-zhong   

  1. School of Economics and Management, Fuzhou University, Fuzhou 350108, China
  • Received:2014-06-20 Revised:2014-08-07 Online:2014-12-25 Published:2014-12-30

摘要:

选取1978–2012 年的数据,应用交叉效率数据包络分析法(Cross-efficiency DEA)和向量自回归模型(Vector Autoregression, VAR)对中国现代交通运输业的效率波动 情况及其影响因素进行分析.研究结果表明,交通运输业的投入和产出要素之间,均存在 单向格兰杰(Granger)因果关系;交通运输业的效率波动可以划分为效率上升、高效运行 和效率下降三个阶段,总体上呈现出“先升后降”的趋势;交通运输业对人均消费、政府支 出、能源消耗和固定资产投资的冲击均表现出正向为主的响应,对劳动的冲击表现出负 向响应,而对信息的冲击则表出响应“滞后”

关键词: 综合交通运输, 效率波动性, 交叉效率DEA, 现代交通运输业, 影响因素, VAR模型, 脉冲响应, 动态分析

Abstract:

In order to explore the efficiency volatility and influence factors of Chinese modern transportation industry based on the data from 1978 to 2012, the Cross-efficiency DEA and VAR model are adopted. The result proves that, one- way Granger casualty relationship exists, respectively, between the input variables and output variables; the efficiency volatility of modern transportation can be divided into three stages: efficiency improvement, high efficiency operation and efficiency loss, which shows the trend of “rising first, then falling”in general; the response of transportation industry to the shock of per capita consumption, government spending, energy consumption and fixed- asset investment are positive, while to the shock of labor factor is negative, what’s more,“lag effect”exists in the response of transportation industry to the shock of information element.

Key words: integrated transportation, efficiency volatility, cross- efficiency DEA, modern transportation industry, influence factors, VAR model, impulse response, dynamic analysis

中图分类号: