交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (1): 150-158.

• 系统工程理论与方法 • 上一篇    下一篇

基于多重“分解—集成”策略的物流货运量预测

周程*1, 李松2   

  1. 1. 湖北经济学院物流与工程管理学院, 武汉430205;2. 武汉理工大学物流工程学院, 武汉430063
  • 收稿日期:2014-07-18 修回日期:2014-09-27 出版日期:2015-02-25 发布日期:2016-02-25
  • 作者简介:周程(1978-),女,湖北宜昌人,副教授,博士.
  • 基金资助:

    国家社会科学基金项目(14BJY139); 国家自然科学基金项目(51175394); 湖北省教育厅人文社科(2012Q099); 湖北物流发展研究中心资助项目(2014A03).

Logistics Freight Volume Forecasting Based on Multilevel Decompose-ensemble Method

ZHOU Cheng1, LI Song2   

  1. 1.School of Logistics and Engineering Management, Hubei University of Economics,Wuhan 430205, China; 2.School of Logistics Engineering,Wuhan University of Technology,Wuhan 430063, China
  • Received:2014-07-18 Revised:2014-09-27 Online:2015-02-25 Published:2016-02-25

摘要:

货运量预测是制定物流政策和决定物流基础设施布局的重要依据.针对受多因素影响的货运量预测具备较强非线性和模糊性特征,提出一种基于趋势分解和小波变换的多重“分解—集成”预测方法.利用趋势分解将货运量分解为趋势项和非趋势项,通过小波分解将非趋势项进一步分解成低频项和高频项,分别建立预测模型,选用相加集成得到货运量预测值.实证表明,“分解—集成”的预测策略将非平稳货运量分解为相对平稳的子序列组合,降低了问题复杂度,有效提高了预测性能,与传统的趋势分解预测模型和小波分解预测模型相比,多重“分解—集成”预测模型精度更高.

关键词: 物流工程, 小波变换, 趋势分解, 分解&mdash, 集成, 物流货运量

Abstract:

Logistics freight volume forecasting is essential for forming logistics policy and determining the logistics infrastructure layout, which reflects strong- nonlinearity and ambiguity due to various affecting factors. A new forecasting approach based on multilevel decompose-ensemble is proposed for logistics freight volume. Original freight volume is firstly decomposed into trend component and non- trend component in accordance with trend decomposition. Then, non-trend component is further decomposed into a low frequency subseries and a several high frequency subseries by using of wavelet decomposition. With respect to their different features, trend component, low frequency non-trend component and high frequency non-trend component are respective forecasted. The prediction result of freight volume is the superimposition of these subseries predictions. Non-stationary time series is resolved into relatively stationary subsequences in accordance with trend decomposition and wavelet decomposition. The empirical test proves that the proposed forecasting method based on multilevel decompose-ensemble method is higher accuracy, which is compared with traditional decompose-ensemble forecasting method based on trend decomposition or wavelet decomposition.

Key words: logistics engineering, wavelet transform, trend decomposition, decompose-ensemble, logistics freight volume

中图分类号: