交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (6): 184-189.

• 系统工程理论与方法 • 上一篇    下一篇

基于粒计算的交通流参数预测

丁宏飞1,2,刘博2,罗霞* 2,李演洪2   

  1. 1. 四川省交通运输厅公路规划勘察设计研究院,成都610041;2. 西南交通大学交通运输与物流学院,成都610031
  • 收稿日期:2015-06-24 修回日期:2015-07-23 出版日期:2015-12-25 发布日期:2015-12-25
  • 作者简介:丁宏飞(1985-),男,重庆梁平人,博士生.
  • 基金资助:

    国家自然科学基金资助项目(51308475);四川省科技支撑计划资助项目(2011FZ0050)

Traffic Flow Parameter Prediction Based on Granular Computing

DING Hong-fei1,2,LIU Bo2,LUO Xia2,LI Yan-hong2   

  1. 1. Highway Planning, Survey, Design and Research Institute, Sichuan Provincial Transport Department, Chengdu 610041, China;2. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2015-06-24 Revised:2015-07-23 Online:2015-12-25 Published:2015-12-25

摘要:

交通流参数预测是交通流诱导和交通信息发布的重要依据.以信息颗粒为基 础数据分析单元,针对以往模糊时间序列模型存在的缺陷,提出一种新方法构建模糊时 间序列模型,该方法在挖掘数据内在信息关联的基础上,考虑时间变量影响下分析动态 可变的区域间隔长度.此方法主要特点是基于Gath-Geva 模糊聚类的时间序列分割,利用 模糊分割构造信息颗粒,以信息颗粒为数据单元,通过粒计算分析交通流参数动态变化 趋势.实验结果表明,基于粒计算的交通流参数预测可以预测合理的交通流参数置信区 间,比传统的参数数值预测可靠度更高,对于交通状态的动态分析具有指导意义.

关键词: 城市交通, 信息颗粒, 模糊聚类, 交通流参数, 粒计算

Abstract:

Traffic flow parameter prediction is the foundation of traffic flow guidance system and traffic information display system. This paper takes information granule as basic analysis unit, and provides a brand new approach to build fuzzy time series model aiming to neutralize original model’s defects. Based on digging internal correlations of the data, this new approach analyzes dynamic regional interval length under the influence of time variables. This approach is characterized as Gath- Geva fuzzy clustering algorithm based on the segmentation of time series, where the information granule serves as data units is analyzed by granular computing, from which the traffic flow parameters’fluctuation trends are captured. Experimental results show that traffic flow parameter prediction based on granular computing gives reasonable confidence interval and is more reliable than the original. The new approach is helpful for further traffic state dynamic analysis.

Key words: urban traffic, information granule, fuzzy clustering, traffic flow parameters, granular computing

中图分类号: