交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (1): 196-201.

• 系统工程理论与方法 • 上一篇    下一篇

一种航路扇区概率性交通需求预测方法

田文*,张颖,代晓旭,胡彬   

  1. 南京航空航天大学国家空管飞行流量管理技术重点实验室,南京211106
  • 收稿日期:2015-07-07 修回日期:2015-08-17 出版日期:2016-02-25 发布日期:2016-02-25
  • 作者简介:田文(1981-),女,山东青岛人,讲师.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(71301074);国家自然科学基金委员会与中国民 用航空局联合资助项目/Joint Funds of the National Natural Science Foundation of China(U1333202);中央高校基本科研业务 费专项资金资助/Fundamental Research Funds for the Central Universities(NJ20150029).

An En-route Sector Probability Traffic Demand Prediction Method

TIANWen,ZHANG Ying,DAI Xiao-xu,HU Bin   

  1. National Key Laboratory of Air Traffic Flow Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2015-07-07 Revised:2015-08-17 Online:2016-02-25 Published:2016-02-25

摘要:

空中交通拥堵逐渐从终端区向高空航路网络蔓延,准确预测航路扇区交通需 求概率性变化成为科学实施拥堵管理的重要前提,而国外已有方法较难适用我国空管实 际数据条件.为解决该问题,本文基于空管现有航空器过点时间数据,设计了基于预测误 差分布特性的统计方法,提出了航路扇区概率性交通需求预测方法.结合中南地区典型运 行数据,提取并验证了各扇区过点时间的预测误差分布规律,获得了各扇区交通需求值 及其概率分布,发现所得概率性交通需求预测结果较之传统确定性交通需求预测方法更 准确,适合为我国高空航路拥堵管理研究提供需求预测依据.

关键词: 航空运输, 交通需求预测, 统计预测误差, 航路扇区, 概率性预测

Abstract:

With air traffic congestion spreading from terminal areas to upper en- route network, accurate prediction of the probabilistic en- route sector traffic demand changes is important for airspace congestion management, since the existing methods aren’t suitable for our actual air traffic control data. To solve this problem, based on the existing air traffic data of aircraft passing point time, the data statistics method based on prediction error distribution characteristics is designed, and an en-route sector probability traffic demand prediction method is proposed. Combined with the typical operation data of south- middle area, the prediction error distribution of passing- point time in sectors is abstracted and verified, the sector traffic demand and its probabilistic distribution is obtained. It is founded that the accuracy of probability traffic demand prediction is improved comparing to classic methods. Thus, this method is more suitable to provide traffic demand prediction results for our upper en-route congestion management research.

Key words: air transportation, traffic demand prediction, prediction error statistics, en-route sector, probability prediction

中图分类号: