交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (6): 176-181.

• 系统工程理论与方法 • 上一篇    下一篇

基于多项式趋势模型的动态OD 矩阵估计

江竹1,雷震宇*2,李树彬3   

  1. 1. 西华大学能源与动力工程学院,成都610039;2. 同济大学铁道与城市轨道交通研究院,上海201804;3. 山东警察学院治安系,济南250014
  • 收稿日期:2016-04-22 修回日期:2016-06-08 出版日期:2016-12-25 发布日期:2016-12-26
  • 作者简介:江竹(1979-),女,四川人,副教授.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(71471104);流体及动力机械教育部重点实验室开放基金/Key Laboratory of Fluid and Power Machinery, Ministry of Education(szjj2014-038,szjj2015-026).

Estimation of Dynamic OD Flow Based on Polynomial Trend Model

JIANG Zhu1, LEI Zhen-yu2, LI Shu-bin3   

  1. 1. School of Energy and Power Engineering, Xihua University, Chengdu 610039, China; 2. Institute of Rail Transit, Tongji University, Shanghai 201804, China;3. Public Security Department, Shandong Policy College, Jinan 250014, China
  • Received:2016-04-22 Revised:2016-06-08 Online:2016-12-25 Published:2016-12-26

摘要:

为了更加精准地描述动态交通流演变过程,得到状态的最优无偏估计,本文基于多项式趋势模型和卡尔曼滤波理论,提出一种实时动态OD矩阵估计的多项式趋势滤波算法.该算法首先将状态变量定义为实际OD流量相对于其历史值的偏差,并将该偏差表述为一个具有滑动趋势的随机演变过程,然后通过建立一个多项式趋势滤波模型实现对动态OD矩阵的估计与预测.最后以一条接近实际路况的高速路网为研究对象进行仿真.大量仿真试验结果表明,本文提出的算法性能优于传统方法,能获得更准确的OD矩阵估计与预测信息.

关键词: 智能交通, OD矩阵无偏估计, 卡尔曼滤波, 多项式趋势模型, 高速路

Abstract:

To more accurately describe the evolution process of dynamic traffic flow, and get an unbiased estimation of state vectors, a novel polynomial trend filtering method is proposed for real dynamic OD matrix estimation on the basis of the polynomial trend model and the Kalman filtering theory in the paper. Firstly, the state variables are defined as the deviations of the actual OD flow from the historical values. These deviations are presented as a stochastic evolution process with a sliding trend. Furthermore, the dynamic OD matrix is estimated and predicated by establishing a polynomial trend filtering model. Finally, a simulation freeway is used as the research object, and a large number of simulation results prove that the performance of the algorithm proposed in this paper is better than the traditional method, and this algorithm can acquire more accurate estimation and prediction information for OD matrix.

Key words: intelligent transportation, OD matrix unbiased estimation, Kalman filtering, polynomial trend model, freeway

中图分类号: