[1] 陈龙, 潘志敏, 李清泉, 等. 利用 ASIFT 算法实现多视角静态交通标志识别[J]. 武汉大学学报(信息科学版), 2013, 38(5): 553- 556. [CHEN L, PAN Z M, LI Q Q, et al. Multi- view traffic sign recognition based on ASIFT[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 553-556.]
[2] GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1498-1506.
[3] 刘华平, 李建民, 胡晓林, 等. 动态场景下的交通标识检测与识别研究进展[J]. 中国图象图形学报, 2013, 18 (5): 493-503. [LIU H P, LI J M, HU X L, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503.]
[4] 谷明琴, 蔡自兴, 李仪, 等. 基于多模型表示的交通标志识别算法设计[J]. 控制与决策, 2013, 28(6): 844- 848. [GU M Q, CAI Z X, LI Y, et al. Traffic sign recognition algorithm design based on multi- modal representation[J]. Control and Decision, 2013, 28(6): 844-848.]
[5] KHAN J F, BHUIYAN S M A, ADHAMI R R. Image segmentation and shape analysis for road-sign detection [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96.
[6] DAN C, MEIER U, MASCI, et al. Multi- column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32(1): 333-338.
[7] ZAKLOUTA F, STANCIULESCU B. Real- time traffic sign recognition in three stages[J]. Robotics and Autonomous Systems, 2014, 62(1): 16-24.
[8] 谢锦, 蔡自兴, 邓海涛, 等. 基于图像不变特征深度学习的交通标志分类[J]. 计算机辅助设计与图形学学报, 2017, 29(4): 632-640. [XIE J, CAI Z X, DENG H T, et al. Traffic sign classification based on deep learning of image invariant feature[J]. Journal of ComputerAided Design & Computer Graphics, 2017, 29(4): 632- 640.]
[9] 毕笃彦, 库涛, 查宇飞, 等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38 (5): 1099-1106. [BI D Y, KU T, ZHA Y F, et al. Scaleadaptive object tracking based on color names histogram [J]. Journal of Electronics & Information Technology, 2016, 38(5): 1099-1106.]
[10] YIN S Y, PENG O Y, LIU L B, et al. Fast traffic sign recognition with a rotation invariant binary pattern based feature[J]. Sensors, 2015, 15(1): 2161-2180.
[11] 徐岩, 韦镇余. 一种改进的交通标志图像识别算法[J]. 激光与光电子学进展, 2017, 54(2): 124-131. [XU Y, WEI Z Y. An improved traffic sign image recognition algorithm[J]. Laser & Optoelectronics Progress, 2017, 54 (2): 124-131.]
[12] 蒋承知, 于起, 叶文强, 等. 卷积神经网络算法的比较探 究 [J]. 电 子 技 术 与 软 件 工 程, 2017(7): 78- 80. [JIANG C Z, YU Q, YE W Q, et al. Comparison and exploration of the convolution neural network algorithm [J]. Electronic Technology and Software Engineering, 2017(7): 78-80.]
[13] 刘亚辰, 陈跃鹏, 张赛硕, 等. 融合式空间塔式特征和 HIK-SVM 的交通标志识别研究[J]. 交通运输系统工程与信息, 2017, 17(1): 220-226. [LIU Y C, CHEN Y P, ZHANG S S, et al. Traffic sign recognition based on pyramid histogram fusion descriptor and HIK- SVM[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 220-226. ]
[14] HU J, SHEN L, SUN G. Squeeze- and- excitation networks[DB]. arXiv: 1709.01507v1, 2017. |