在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于 Kmeans对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squeeze)相结合的交通标志识别方法.首先,采用 K-means对交通标志图像进行三角形、圆形图像二聚类,并利用制作的切割模板切割 ROI 并提取 HOG 特征;然后,利用卷积神经网络 (Convolutional Neural Network, CNN)对 HOG特征进行过滤、降维,并通过 Squeeze网络对过滤后的二次特征进行重要性标定;最后,训练该网络模型并实现对交通标志的识别.仿真结果表明,与 BP网络、SVM 及CNN对比,本文方法在保证训练时间的同时,识别精度达到98.58%.