[1] KLOSTERHALFEN S T, KALLRATH J, FISCHER G. Rail car fleet design: Optimization of structure and size [J]. Int. J. Production Economics, 2014(157): 112-119.
[2] ISLAM D M Z, JACKSON R, ROBINSON M. European freight rolling stock fleet size in 2050 in light of the Transport White Paper 2011[J]. Journal of Rail Transport Planning & Management, 2015: S2210970615300056.
[3] 穆鑫, 程学庆, 朱永霞, 等. 基于二元线性模型的铁路货车保有量预测[J]. 中国铁道科学, 2013, 34(2): 113- 116. [MU X, CHENG X Q, ZHU Y X, et al. Prediction on the number of railway freight trains based on binary linear model[J]. China Railway Science, 2013, 34(2): 113-116.]
[4] 何耀耀, 郑丫丫, 杨善林. 基于 Box-Cox变换分位数回归与负荷关联因素辨识的中长期概率密度预测[J]. 系统工程理论与实践, 2018, 38(1): 197-207. [HE Y Y, ZHENG Y Y, YANG S L. Medium and long term probability density forecasting based on Box-Cox transformation quantile regression and load relation factor identification[J]. Systems Engineering —Theory & Practice, 2018, 38(1): 197-207.]
[5] 梁宁, 耿立艳, 张占福, 等. 基于 GRA与 SVM-mixed的货运量预测方法[J]. 交通运输系统工程与信息, 2016, 16(6): 94-99. [LIANG N, GENG Y, ZHANG Z F, et al. A prediction method of railway freight volumes using GRA and SVM-mixed[J]. Journal of Transportation Systems Engineering and Information, 2016, 16(6): 94- 99.]
[6] 齐杉, 李夏苗, 吴慧山, 等. 不确定环境下铁路客运量预测方法[J]. 铁道科学与工程学报, 2016, 13(1): 168- 175. [QI S, LI X M, WU H S, et al. Prediction method of railway passenger traffic volume under uncertainty environment[J]. Journal of Railway Science and Engineering, 2016, 13(1): 168-175.]
[7] CANNON A J. Qauantile regression neural networks: Implementation in R and application to precipitation down-scalin[J]. Computers & Geosciences, 2010, 37(9): 1277-1284.
[8] YEE T W. Quantile regression via vector generalized additive models[J]. Statistics in Medicine, 2004(23): 2295-2315. |