[1] COSKUN HAMZACEBI. Improving artificial neural networks performance in seasonal time series forecasting [J]. Information Sciences I, 2008(78): 4550-4559
[2] 白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息, 2017, 17(1): 127- 135. [BAI L. Urban rail transit normal and abnormal short-term passenger flow forecasting method [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 127-135.]
[3] 李晓峰. 基于数据挖掘的城市轨道交通车站突发客流预测研究[D]. 北京: 北京交通大学, 2017. [LI X F. Research on forecast passenger flow bursted in urban rail station on data mining[D]. Beijing: Beijing Jiaotong University, 2017.]
[4] 史文雯. 城市轨道交通短时客流预测与最优客运能力调配问题的研究[D]. 北京: 北京交通大学, 2011. [SHI W W. Study on short-term passenger flow forecast and the optimal capacity allocation problem in urban mass transit[D]. Beijing: Beijing Jiaotong University, 2011.]
[5] 沈景炎. 城市轨道交通客流预测内容和应用[J]. 城市交 通, 2008, 6(6): 9- 20. [SHEN J Y. Forecasting and application of rail transit passenger volumes[J]. Urban Transport of China, 2008, 6(6): 9-20.]
[6] 董升伟. 基于改进 BP神经网络的轨道交通短时客流预测方法研究[D]. 北京: 北京交通大学, 2013. [DONG S W. The research of short-time passenger flow forecasting based on improved BP neural network in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2013.]
[7] 周开利, 康耀红. 神经网络模型及其 MATLAB仿真程序设计[M]. 北京: 清华大学出版社, 2005. [ZHOU K L, KANG Y H. Neural network model and its MATLAB simulation program design[M]. Beijing: Tsinghua University Press, 2005.]
[8] NINOMIY Y. Information criterion for gaussian changepoint model[J]. Statistics & Probability Letters, 2005, 72 (3): 237-247.
[9] 王慧敏, 贺兴时, 赵文芝. 变点统计分析及实例研究 [J]. 电子测试, 2013(18): 38-40. [WANG H M, HE X S, ZHAO W Z. The statistical analysis and case study of change points[J]. Electronic Test, 2013(18): 38-40.] |