交通运输系统工程与信息 ›› 2019, Vol. 19 ›› Issue (3): 237-244.

• 案例分析 • 上一篇    

基于高速公路流水数据的通勤车辆特征研究

魏广奇 1, 2,苏跃江*1, 2,吴德馨 1, 2,袁敏贤 1, 2   

  1. 1. 广州市交通运输研究所,广州 510000;2. 广州市公共交通研究中心,广州 510000
  • 收稿日期:2018-12-03 修回日期:2019-03-22 出版日期:2019-06-25 发布日期:2019-06-25
  • 作者简介:魏广奇(1977-),男,山西长治人,高级工程师.

Trip Characteristics of Vehicle with Commuting Property Based on Highway Ticket Data

WEI Guang-qi1, 2, SU Yue-jiang1, 2, WU De-xin1, 2, YUAN Min-xian1, 2   

  1. 1. Guangzhou Transport Research Institute, Guangzhou 510000, China; 2. Guangzhou Public Transport Research Center, Guangzhou 510000, China
  • Received:2018-12-03 Revised:2019-03-22 Online:2019-06-25 Published:2019-06-25

摘要:

随着居民利用高速公路进行通勤出行车辆的增加,高速公路缓行和交通拥堵等问题时有发生,特别是在重大节假日期间.目前,解决上述交通问题的主要方法是交通需求管理措施,而实现有针对性的交通需求管理需要对高速公路收费流水数据进行精确的挖掘分析,掌握车辆在高速公路上的运行状态与时空分布特征.本文基于高速公路收费流水数据,借助 K-means++聚类方法识别使用高速公路日常通勤的车辆,进一步分析通勤车辆的出行时空分布特征.从通勤出行的角度,挖掘城市通勤快速出行廊道分布,研究高速公路网与城市道路网络的关系,对提高交通系统效率和缓解交通问题具有重要的意义.

关键词: 城市交通, 高速公路收费流水数据, 通勤识别, 特征聚类

Abstract:

The use of high- speed commuter vehicles has also increased especially during major holidays, and traffic problems such as high-speed slow-moving and congestion have occurred. At present, the main method to solve the above traffic problems is traffic demand management, and the realization of targeted traffic demand management requires mining and analysis of highway toll ticket data, and grasping the running state and spacetime distribution characteristics of vehicles on the expressway. Based on the highway toll ticket data, this paper uses the K-means++ clustering method to identify the commuter vehicles which is using the highway, and further analyzes the time and space distribution characteristics of the commuter vehicles. From the perspective of commuting, it is of great significance to explore the distribution of urban commuter vehicles’rapid travel corridors and study the relationship between highway network and urban road network, which is to improve the efficiency of urban transportation system and alleviate traffic problems.

Key words: urban traffic, highway toll ticket data, commuting identification, feature clustering

中图分类号: