[1] HORNER M W. Extensions to the concept of excess commuting[J]. Environment & Planning A, 2002, 34(3): 543-566.
[2] CHARRON M. From excess commuting to commuting possibilities: More extension to the concept of excess commuting[J]. Environment & Planning A, 2007, 39(5): 1238-1254.
[3] KANAROGLOU P S, HIGGINS C D, CHOWDHURY T A. Excess commuting: A critical review and comparative analysis of concepts, indices, and policy implications[J]. Journal of Transport Geography, 2015(44): 13-23.
[4] O'KELLY M E, NIEDZIELSKI M A. Efficient spatial interaction: attainable reductions in metropolitan average trip length[J]. Journal of Transport Geography, 2008, 16(5): 313-323.
[5] WHITE M J. Urban commuting journeys are not "Wasteful"[J]. Journal of Political Economy, 1988, 96 (5): 1097-1110.
[6] SMALL K A, SONG S F. "Wasteful" commuting: A resolution[J]. University of California Transportation Center Working Papers, 1992, 100(4): 888-898.
[7] 韩会然, 杨成凤, 宋金平. 公共交通与私家车出行的通勤效率差异及影响因素: 以北京都市区为例[J]. 地理研究, 2017, 36(2): 253-266. [HAN H R, YANG C F, SONG J P. Impact factors and differences in commuting efficiency between public transit and private automobile travel: A case study on the Beijing metropolitan area[J]. Geographical Research, 2017, 36(2): 253-266.]
[8] 刘贤腾, 陈雪明, 周江评. 就业—居住空间关系及通勤效率: 过剩通勤的评估潜力[J]. 城市交通, 2018, 16 (2): 14-22. [LIU X T, CHEN X M, ZHOU J P. Study on jobs-housing spatial relationship and commuting efficiency: Evaluation potential of excess commuting[J]. Urban Transport of China, 2018, 16(2): 14-22.]
[9] MERRIMAN D, OHKAWARA T, SUZUKI T. Excess commuting in the tokyo metropolitan area: Measurement and policy simulations[J]. Urban Studies (Routledge), 1995, 32(1): 69-86.
[10] HORNER M W, MURRAY A T. Excess commuting and the modifiable areal unit problem[J]. Urban Studies (Routledge), 2002, 39(1): 131-139.
[11] NIEDZIELSKI M A, HORNER M W, XIAO N. Analyzing scale independence in jobs-housing and commute efficiency metrics[J]. Transportation Research Part A, 2013, 58(3): 129-143.
[12] 龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012, 67(10): 1339- 1352. [LONG Y, ZHANG Y, CUI C Y. Identifying commuting pattern of Beijing using bus smart card data [J]. Acta Geographica Sinica, 2012, 67(10): 1339-1352.]
[13] SUI T, ROHDE D, CORCORAN J. Examining the spatial- temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap[J]. Journal of Transport Geography, 2014, 41(41): 21-36.
[14] SUN L J, TIRACHINI A, AXHAUSEN K W, et al. Models of bus boarding and alighting dynamics[J]. Transportation Research Part A: Policy & Practice, 2014, 69(C): 447-460.
[15] 冷炳荣, 余颖, 黄大全, 等. 大数据视野下的重庆主城区职住关系剖析[J]. 规划师, 2015, 31(5): 92- 96. [LENG B R, YU Y, HUANG D Q, et al. Big data based job- residence relation in chongqing metropolitan area [J]. Planners, 2015, 31(5): 92-96.]
[16] ZHANG P, ZHOU J P, ZHANG T R. Quantifying and visualizing jobs-housing balance with big data: A case study of Shanghai[J]. Cities, 2017(66): 10-22.
[17] 钱志诚. 基于地铁刷卡数据和问卷调查数据的深圳市过度通勤研究[D]. 深圳: 深圳大学, 2017. [QIAN Z C. Analyzing excess commuting of Shenzhen by using smart card data of metro and questionnaire data[D]. Shenzhen: Shenzhen University, 2017.]
[18] XU W T, YANG L C, ZHANG W. Evaluation of transport policy packages in the excess commuting framework: The case of Xiamen, China[J]. Cities, 2019 (87): 39-47.
[19] ZHOU J P, MURPHY E. Day-to-day variation in excess commuting: An exploratory study of Brisbane, Australia [J]. Journal of Transport Geography, 2019(74): 223-232.
[20] MA X L, LIU C C, WEN H M, et al. Understanding commuting patterns using transit smart card data[J]. Journal of Transport Geography, 2017(58): 135-145.
[21] WILSON A G. Entropy in urban and regional modelling [M]. London: Pion, 1970.
[22] MACKINNON R D. Entropy in urban and regional modelling by A. G. Wilson[J]. Economic Geography, 1972, 48(4): 446-447.
[23] WILSON A. Entropy in urban and regional modelling: Retrospect and prospect[J]. Geographical Analysis, 2010, 42(4): 364-394.
[24] 李军, 邓红平. 基于公交IC 卡数据的乘客出行分类研究[J]. 重庆交通大学学报( 自然科学版), 2016, 35(6): 109-114. [LI J, DENG H P. Classification of passenger's travel behavior based on IC card data[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(6): 109-114.] |