交通运输系统工程与信息 ›› 2020, Vol. 20 ›› Issue (2): 69-75.

所属专题: 自动驾驶技术

• 智能交通系统与信息技术 • 上一篇    下一篇

基于自适应迭代学习控制的列车自动驾驶算法

何之煜*,徐宁   

  1. 中国铁道科学研究院集团有限公司通信信号研究所,北京 100081
  • 收稿日期:2019-09-25 修回日期:2020-02-20 出版日期:2020-04-25 发布日期:2020-04-30
  • 作者简介:何之煜(1992-),男,浙江金华人,助理研究员,博士.
  • 基金资助:

    中国铁路总公司科技研究开发计划课题/China Railway Corporation Scientific Research Program(2017X002).

Automatic Train Operation Algorithm Based on Adaptive Iterative Learning Control Theory

HE Zhi-yu, XU Ning   

  1. Signal & Communication Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
  • Received:2019-09-25 Revised:2020-02-20 Online:2020-04-25 Published:2020-04-30

摘要:

针对高速列车自动驾驶系统受到时变外部扰动和受限状态的情况,提出一种基于迭代学习控制的自适应控制算法. 基于Lyapunov 函数,利用列车运行过程中的状态偏差,推导出自适应迭代学习控制律和参数学习更新律. 构造类Lyapunov 函数的复合能量函数,通过迭代域的差分,证明其差分负定性和收敛性. 采用所提控制算法对列车跟踪性能进行计算机仿真和实例仿真验证,结果表明,所提出的自适应迭代学习控制算法对列车期望曲线跟踪具有较高的精度和较快的收敛速度,能够在较短的迭代次数实现对期望曲线的精确跟踪.

关键词: 铁路运输, 列车自动驾驶, 自适应迭代学习控制, 高速列车, Lyapunov 函数, 跟踪误差

Abstract:

To study the automatic control of high-speed trains with time-varying exterior disturbances and state saturation, this paper proposes an adaptive iterative learning control algorithm. Based on Lyapunov function, the control law and the parameter of updating law are deduced by considering the state error during the operating process. Then the Lyapunov-like composite energy function is established. The differential negative definiteness and robustness of the proposed function are verified. The proposed adaptive iterative learning control algorithm has been applied to computational simulation and real case study to verify the tracking performance. The results show that the proposed algorithm improves tracking accuracy and convergence speed. It was able to accurately track the desired profile with less iterative times than before.

Key words: railway transportation, automatic train operation, adaptive iterative learning control, high- speed train, Lyapunov function, tracking error

中图分类号: